u c s b High Energy Physics

Searching for top squarks at CMS

Claudio Campagnari UC Santa Barbara 6 February 2014

Outline

- Why searching for top squarks (stops)
- Top squarks production and decay
- Search in lepton+jets mode at CMS
- Limitations
- Conclsions and prospects

Hierarchy problem, naturalness

$$\Delta m_H^2 \sim \left| y_t \right|^2 \left[-\Lambda_{UV}^2 + \frac{3}{2} m_t^2 \log \left(\frac{\Lambda_{UV}^2}{m_t^2} \right) \right]$$

• In SM enormous radiative corrections to M_{higgs} : $\Delta m^2 \approx \Lambda^2_{UV}$

- In SM enormous radiative corrections to M_{higgs} : $\Delta m^2 \approx \Lambda^2_{UV}$
- Stop loop cancels Λ^2_{UV} term, adds $\approx m^2_{stop}$ term
- Light stops (≤ 0.5-1 TeV) needed for "natural" (not fine-tuned) solution to hierarchy problem

Top squark production processes

Top squark production processes

Will concentrate on pair production.

Top squark decay modes (RPC) $\Delta m = m_{stop} - m_{\tilde{\chi}_1^0}$

Top squark decay modes (RPC) $\Delta m = m_{stop} - m_{\tilde{\chi}_1^0}$

Top squark decay modes

top-neutralino mode

b-chargino mode

Top squark decay modes

Signal and background, general considerations

- Signal is "ttbar + MET"
 - MET from neutralinos
- Background is ttbar
 - Also: W+jets, single-top, rare processes (eg: ttbarW)
- Can look in three channels:
 - 0 leptons
 - 1 lepton
 - 2 leptons

Signal and background, general considerations

- Signal is "ttbar + MET"
 - MET from neutralinos
- Background is ttbar
 - Also: W+jets, single-top, rare processes (eg: ttbarW)
- Can look in three channels:

What is the challenge?

The ttbar cross-section is enormous!

Lepton-MET Transverse mass (M_T)

- In semileptonic ttbar, MET is from v from $W \rightarrow Iv$ $\rightarrow M_T$ is bound by M_W
- In signal events, MET is from v from W \rightarrow Iv <u>and</u> from two LSPs

 \rightarrow M_T easily extend past M_W

Lepton-MET Transverse mass (M_T)

- In semileptonic ttbar, MET is from v from $W \rightarrow Iv$ $\rightarrow M_T$ is bound by M_W
- In signal events, MET is from v from W→Iv <u>and</u> from two LSPs

 \rightarrow M_T easily extend past M_W

Lepton-MET Transverse mass (M_T)

- In semileptonic ttbar, MET is from v from $W \rightarrow Iv$ $\rightarrow M_T$ is bound by M_W
- In signal events, MET is from v from W \rightarrow Iv <u>and</u> from two LSPs

 $\rightarrow M_T$ easily extend past M_W

It's a cake walk!

Lepton-MET Transverse mass (M_{τ})

69

√IW

- In semileptonic ttbar, MET is from γ from W \rightarrow IV \rightarrow M_T is bound by M_W $V \rightarrow V$ and
- In signal events, MF from two LSPs 50

 $\rightarrow M_{T} e^{2}$

It's a cake walk!

M_T for lepton+MET+4 jets

M_T for lepton+MET+4 jets

Kinematical Variables

It is clear that more kinematical information in addition to MET and $M_{\rm T}$ is needed to beat down the background

MT2W: a variable against dileptons

— = "missing" particles

MT2W is the minimum "mother" mass compatible with all P_T and invariant mass constraints

> Bai, Cheng, Gallichio, Gu JHEP 07 (2012) 110

$$M_{T2}^{W} = min \left\{ m_y \text{ consistent with:} \left[\begin{array}{c} \vec{p}_1^T + \vec{p}_2^T = \vec{E}_T^{mis}, p_1^2 = 0, (p_1 + p_l)^2 = p_2^2 = M_{W'}^2 \\ (p_1 + p_l + p_{b_1})^2 = (p_2 + p_{b_2})^2 = m_y^2 \end{array} \right] \right\}$$

MT2W works very well!

Correlation btw MET and had. activity (part 1)

Many signal events look like this:

Correlation btw MET and had. activity (part 1)

Many signal events look like this:

Most background events look like this:

Correlation btw MET and had. activity (part 1)

Many signal events look like this:

Most background events look like this:

The fraction of H_T in same hemisphere as the MET is a useful variable

Correlation btw MET and had. activity (part 2)

Most background events look like this:

Suggests use of global event shape variables, eg, sphericity, thrust.....

Correlation btw MET and had. activity (part 2)

Suggests use of global event shape variables, eg, sphericity, thrust.....

To our surprise: simple variable $min[\Delta \phi(jet_1, MET), \Delta \phi(jet_2, MET)]$ works the best

Hadronic top mass reconstruction

top-neutralino mode

- Signal has hadronically decaying top
- Main BG (dileptons) does not

Hadronic top mass reconstruction

b-quark properties

b-chargino mode

b-quark properties

b-chargino mode

Obviously kinematical properties of b-quarks are different depending on whether the b's come from top decay (BG) or directly from stop decay (signal)

Search strategy in a nutshell

Signal Selection

- Start with a lepton + jets preselection
- Kill as many ttbar→dileptons as possible
- Use kinematical variables to reduce background
 - Cut-and-count
 - Multivariate
- Different "signal regions" to cover as much phase space as possible

Background Determination

- From Monte Carlo
- Calibrate/correct Monte Carlo with "control regions"

Signal Selection: Preselection

- 1 isolated e or μ , P_T > 30 GeV
- \geq 4 jets, P_T > 30 GeV, $|\eta|$ < 2.4
- at least one btagged jet
- MET > 100 GeV
- 2nd lepton veto

Signal Selection: dilepton veto

- Veto events with one isolated track $P_T > 10 \text{ GeV}$ - Also catches $W \rightarrow \tau \rightarrow \pi \nu$
- If the track passes very loose electron or muon ID requirements, lower the P_T cut to 5 GeV and loosen the isolation further
- Veto events with identified hadronic τ candidates of P_T > 20 GeV
 - Catches some multiprong tau decays

Signal Selection: cut-and-count vs. multivariate

- Multivariate analysis has "ultimate sensitivity"
- "Cut-and-count" arguably more robust
- More importantly: cut-and-count less sensitive to model details. (Will come back to that)

Do both analyses in parallel
Kinematical quantities well understood

After preselection

Signal Region Selection

- Cross-section and kinematical properties of signal vary widely as a function of stop mass
- Must introduce different signal regions to target different corners of phase space

top-neutralino mode

Kinematics depend on $\Delta M \rightarrow$ train 5 different BDTs

b-chargino mode

Consider 3 mass spectra: \tilde{t} $\tilde{$

 $\Delta M = M(chargino) - M(LSP)$

Kinematics depend on x, $\Delta M \rightarrow$ train 11 different BDTs

Signal regions summary

	$ ilde{{\mathfrak t}} o {\mathfrak t} \widetilde{\chi}_1^0$			$ ilde{\mathfrak{t}} o {\mathfrak{b}} \widetilde{\chi}_1^+$			
		cut-b	vased		cut-based		
Selection	BDT	Low ΔM	High ΔM	BDT	Low ΔM	High ΔM	
$E^{\text{miss}}(C_{\alpha}V)$	yes	> 150, 200,	> 150, 200,	yes	> 100, 150,	> 100, 150,	
$L_{\rm T}$ (GeV)		250, 300	250, 300		200, 250	200, 250	
$M_{\rm T2}^{\rm W}$ (GeV)	yes		> 200	yes		> 200	
min $\Delta \phi$	yes	> 0.8	> 0.8	yes	> 0.8	> 0.8	
$H_{\mathrm{T}}^{\mathrm{ratio}}$	yes			yes			
hadronic top χ^2	(on-shell top)	< 5	< 5				
leading b-jet $p_{\rm T}$ (GeV)	(off-shell top)			yes		> 100	
$\Delta R(\ell, \text{leading b-jet})$				yes			
lepton $p_{\rm T}$				(off shell W)			

- We end up with 18 (BDT) and 16 (cut-and-count) signal regions (SRs)
- M_T > 120 GeV cut common to all SRs (not in BDT)

Search strategy in a nutshell

Signal Selection

- Start with a lepton + jets preselection
- Kill as many ttbar→dileptons as possible
- Use kinematical variables to reduce background
 - Cut-and-count
 - Multivariate
- Different "signal regions" to cover as much phase space as possible

Background Determination

- From Monte Carlo
- Calibrate/correct Monte Carlo with "control regions"

Control Regions (CR)

Define CRs to test the MC modeling of individual variables or even the full event selection on BGenriched samples

- 1. CR with bveto
 - Enriched in W+jets.
- 2. CR with 2nd well-identified lepton or isolated track
 - Enriched in ttbar→dileptons

- Main background: ttbar \rightarrow dileptons
- Only two jets

- Main background: ttbar \rightarrow dileptons
- Only two jets
- Need 2 jets from ISR to pass selection

- Main background: ttbar \rightarrow dileptons
- Only two jets
- Need 2 jets from ISR to pass selection
- Check jet multiplicity in dilepton ttbar

- Main background: ttbar \rightarrow dileptons
- Only two jets
- Need 2 jets from ISR to pass selection
- Check jet multiplicity in dilepton ttbar

Some examples of these checks

Next: the one check that does not look so great

Issue with MET resolution

Effect on M_T measured in W+jets, corrected via scale factor ~ 1.2 ± 0.3

Relatively painless

- Affects ttbar→l+jets also
- Transferring scale factor to ttbar → I+jets not straightforward
 - eg: the effect of "real" tails in M_{τ} due to off-shell W's is very different in pp $\rightarrow W^*$ vs. t $\rightarrow W^*b$
- One of the main sources of systematics

Example: top-neutralino BDT analysis (uncertainties in %)

$\tilde{t} \to t \tilde{\chi}_1^0$									
Sample	BDT1-Loose	BDT1-Tight	BDT2	BDT3	BDT4	BDT5			
M _T -peak data and MC (stat.)	1.0	2.1	2.7	5.3	8.7	3.0			
$t\bar{t} \rightarrow \ell\ell \; N_{jets}$ modeling	1.7	1.6	1.6	1.1	0.4	1.7			
$t\bar{t} \rightarrow \ell\ell \; (\text{CR-}\ell t \; \text{and} \; \text{CR-}2\ell \; \text{tests})$	4.0	8.2	11.0	12.5	7.2	13.8			
2nd lepton veto	1.5	1.4	1.4	0.9	0.3	1.4			
$t\bar{t} \rightarrow \ell\ell$ (stat.)	1.1	2.8	3.4	7.0	7.4	3.3			
W + jets cross section	1.6	2.2	2.8	1.7	2.7	2.2			
W + jets (stat.)	1.1	1.9	2.0	4.6	10.8	5.2			
W + jets SF uncertainty	8.3	7.7	6.8	8.1	9.7	8.6			
$1 - \ell$ top (stat.)	0.4	0.8	0.8	1.4	4.4	1.2			
1 - ℓ top tail-to-peak ratio	9.0	11.4	12.4	19.6	28.5	9.1			
Rare processes cross section	1.8	3.0	4.0	8.1	15.7	0.7			
Total	13.4	17.1	19.3	27.8	38.4	20.2			

Example: top-neutralino BDT analysis (uncertainties in %)

$\tilde{t} \rightarrow t \tilde{\chi}_1^0$									
Sample	BDT1-Loose	BDT1-Tight	BDT2	BDT3	BDT4	BDT5			
M _T -peak data and MC (stat.)	1.0	2.1	2.7	5.3	8.7	3.0			
$t\bar{t} \rightarrow \ell\ell \; N_{jets}$ modeling	1.7	1.6	1.6	1.1	0.4	1.7			
$t\bar{t} \rightarrow \ell\ell \; (\text{CR-}\ell t \; \text{and} \; \text{CR-}2\ell \; \text{tests})$	4.0	8.2	11.0	12.5	7.2	13.8			
2nd lepton veto	1.5	1.4	1.4	0.9	0.3	1.4			
$t\bar{t} \rightarrow \ell\ell$ (stat.)	1.1	2.8	3.4	7.0	7.4	3.3			
W + jets cross section	1.6	2.2	2.8	1.7	2.7	2.2			
W + jets (stat.)	1.1	1.9	2.0	4.6	10.8	5.2			
W + jets SF uncertainty	8.3	7.7	6.8	8.1	9.7	8.6			
$1 - \ell \text{ top (stat.)}$	0.4	0.8	0.8	1.4	4.4	1.2			
1 - ℓ top tail-to-peak ratio	9.0	11.4	12.4	19.6	28.5	9.1			
Rare processes cross section	1.8	3.0	4.0	8.1	15.7	0.7			
Total	13.4	17.1	19.3	27.8	38.4	20.2			

Uncertainties due to MET resolution: as high as ~ 30%

Example: top-neutralino BDT analysis (uncertainties in %)

$t \to t \widetilde{\chi}_1^0$									
Sample	BDT1-Loose	BDT1-Tight	BDT2	BDT3	BDT4	BDT5			
M _T -peak data and MC (stat.)	1.0	2.1	2.7	5.3	8.7	3.0			
$t\bar{t} \rightarrow \ell\ell N_{jets}$ modeling	1.7	1.6	1.6	1.1	0.4	1.7			
$t\bar{t} \rightarrow \ell\ell$ (CR- ℓt and CR- 2ℓ tests)	4.0	8.2	11.0	12.5	7.2	13.8			
2nd lepton veto	1.5	1.4	1.4	0.9	0.3	1.4			
$t\bar{t} \rightarrow \ell\ell$ (stat.)	1.1	2.8	3.4	7.0	7.4	3.3			
W + jets cross section	1.6	2.2	2.8	1.7	2.7	2.2			
W + jets (stat.)	1.1	1.9	2.0	4.6	10.8	5.2			
W + jets SF uncertainty	8.3	7.7	6.8	8.1	9.7	8.6			
$1 - \ell$ top (stat.)	0.4	0.8	0.8	1.4	4.4	1.2			
1 - ℓ top tail-to-peak ratio	9.0	11.4	12.4	19.6	28.5	9.1			
Rare processes cross section	1.8	3.0	4.0	8.1	15.7	0.7			
Total	13.4	17.1	19.3	27.8	38.4	20.2			

Statistics of dilepton control region tests: ~ 4 - 14%

Example: top-neutralino BDT analysis (uncertainties in %)

$\tilde{t} \to t \tilde{\chi}_1^0$								
Sample	BDT1-Loose	BDT1-Tight	BDT2	BDT3	BDT4	BDT5		
M _T -peak data and MC (stat.)	1.0	2.1	2.7	5.3	8.7	3.0		
$t\bar{t} \rightarrow \ell\ell N_{jets}$ modeling	1.7	1.6	1.6	1.1	0.4	1.7		
$t\bar{t} \rightarrow \ell\ell \; (\text{CR-}\ell t \; \text{and} \; \text{CR-}2\ell \; \text{tests})$	4.0	8.2	11.0	12.5	7.2	13.8		
2nd lepton veto	1.5	1.4	1.4	0.9	0.3	1.4		
$t\bar{t} \rightarrow \ell\ell$ (stat.)	1.1	2.8	3.4	7.0	7.4	3.3		
W + jets cross section	1.6	2.2	2.8	1.7	2.7	2.2		
W + jets (stat.)	1.1	1.9	2.0	4.6	10.8	5.2		
W + jets SF uncertainty	8.3	7.7	6.8	8.1	9.7	8.6		
$1 - \ell$ top (stat.)	0.4	0.8	0.8	1.4	4.4	1.2		
1 - ℓ top tail-to-peak ratio	9.0	11.4	12.4	19.6	28.5	9.1		
Rare processes cross section	1.8	3.0	4.0	8.1	15.7	0.7		
Total	13.4	17.1	19.3	27.8	38.4	20.2		

Misc. MC statistics: ~ 4 - 11%

Example: top-neutralino BDT analysis (uncertainties in %)

$t \to t \widetilde{\chi}_1^0$									
Sample	BDT1-Loose	BDT1-Tight	BDT2	BDT3	BDT4	BDT5			
M _T -peak data and MC (stat.)	1.0	2.1	2.7	5.3	8.7	3.0			
$t\bar{t} \rightarrow \ell\ell \; N_{jets}$ modeling	1.7	1.6	1.6	1.1	0.4	1.7			
$t\bar{t} \rightarrow \ell\ell$ (CR- ℓt and CR-2 ℓ tests)	4.0	8.2	11.0	12.5	7.2	13.8			
2nd lepton veto	1.5	1.4	1.4	0.9	0.3	1.4			
$t\bar{t} \rightarrow \ell\ell$ (stat.)	1.1	2.8	3.4	7.0	7.4	3.3			
W + jets cross section	1.6	2.2	2.8	1.7	2.7	2.2			
W + jets (stat.)	1.1	1.9	2.0	4.6	10.8	5.2			
W + jets SF uncertainty	8.3	7.7	6.8	8.1	9.7	8.6			
$1 - \ell$ top (stat.)	0.4	0.8	0.8	1.4	4.4	1.2			
1 – ℓ top tail-to-peak ratio	9.0	11.4	12.4	19.6	28.5	9.1			
Rare processes cross section	1.8	3.0	4.0	8.1	15.7	0.7			
Total	13.4	17.1	19.3	27.8	38.4	20.2			

In the tight signal regions "rare" process matter

Example: top-neutralino BDT analysis (uncertainties in %)

$\tilde{t} \rightarrow t \tilde{\chi}_1^0$									
Sample	BDT1-Loose	BDT1-Tight	BDT2	BDT3	BDT4	BDT5			
M _T -peak data and MC (stat.)	1.0	2.1	2.7	5.3	8.7	3.0			
$t\bar{t} \rightarrow \ell\ell N_{jets}$ modeling	1.7	1.6	1.6	1.1	0.4	1.7			
$t\bar{t} \rightarrow \ell\ell$ (CR- ℓt and CR- 2ℓ tests)	4.0	8.2	11.0	12.5	7.2	13.8			
2nd lepton veto	1.5	1.4	1.4	0.9	0.3	1.4			
$t\bar{t} \rightarrow \ell\ell$ (stat.)	1.1	2.8	3.4	7.0	7.4	3.3			
W + jets cross section	1.6	2.2	2.8	1.7	2.7	2.2			
W + jets (stat.)	1.1	1.9	2.0	4.6	10.8	5.2			
W + jets SF uncertainty	8.3	7.7	6.8	8.1	9.7	8.6			
$1 - \ell$ top (stat.)	0.4	0.8	0.8	1.4	4.4	1.2			
$1 - \ell$ top tail-to-peak ratio	9.0	11.4	12.4	19.6	28.5	9.1			
Rare processes cross section	1.8	3.0	4.0	8.1	15.7	0.7			
Total	13.4	17.1	19.3	27.8	38.4	20.2			

Total uncertainty: ~ 13 – 40%

Expectations

Example: top-neutralino BDT analysis (number of events)

$\widetilde{t} \to t \widetilde{\chi}_1^0$						
Sample	BDT1-Loose	BDT1-Tight	BDT2	BDT3	BDT4	BDT5
$t\bar{t} \to \ell\ell$	438±37	68±11	46 ± 10	5 ± 2	0.3 ± 0.3	48±13
1ℓ top	251 ± 93	37 ± 17	22 ± 12	4 ± 3	0.8 ± 0.9	30 ± 12
W + jets	27 ± 7	7 ± 2	6 ± 2	2 ± 1	0.8 ± 0.3	5 ± 2
Rare	47 ± 23	11 ± 6	10 ± 5	3 ± 1	1.0 ± 0.5	4 ± 2
Total	763 ± 102	124 ± 21	85 ± 16	13 ± 4	2.9 ± 1.1	87 ± 18
$\widetilde{t} \rightarrow t \widetilde{\chi}_1^0 (250/50)$	285 ± 8.5	50 ± 3.5	28 ± 2.6	4.4 ± 1.0	0.3 ± 0.3	34 ± 2.9
$\widetilde{t} \rightarrow t \widetilde{\chi}_1^0 ~(650/50)$	12 ± 0.2	7.2 ± 0.2	9.8 ± 0.2	6.5 ± 0.2	4.3 ± 0.1	2.9 ± 0.1

Good sensitivity across broad mass range

Results

Example: top-neutralino BDT analysis (number of events)

$\widetilde{t} \to t \widetilde{\chi}_1^0$						
Sample	BDT1-Loose	BDT1-Tight	BDT2	BDT3	BDT4	BDT5
$t\bar{t} \to \ell\ell$	438 ± 37	68 ± 11	46 ± 10	5 ± 2	0.3 ± 0.3	48 ± 13
1ℓ top	251 ± 93	37 ± 17	22 ± 12	4 ± 3	0.8 ± 0.9	30 ± 12
W+jets	27 ± 7	7 ± 2	6 ± 2	2 ± 1	0.8 ± 0.3	5 ± 2
Rare	47 ± 23	11 ± 6	10 ± 5	3 ± 1	1.0 ± 0.5	4 ± 2
Total	763 ± 102	124 ± 21	85 ± 16	13 ± 4	2.9 ± 1.1	87 ± 18
Data	728	104	56	8	2	76

No excess anywhere

Example BDT and M_T distributions

Looks OK

Example BDT and M_T distributions

Looks OK

Limits: top-neutralino mode

Cut-and-count limits a little worse

Comparison with generic 0-lepton search

Comparison with generic 0-lepton search

Some (slightly) dirty laundry

Polarization in stop decays

The stop₁ and stop₂ are linear combinations of stop_L and stop_R

The LSP is a mixture of wino, bino, higgsino

$$\tilde{N} = (\tilde{B}, \tilde{W}^3, \tilde{H}^0_d, \tilde{H}^0_u) \qquad \tilde{\chi}^0_j = \sum_{k=1}^{\infty} N_{jk} \tilde{N}_k.$$

The top <u>chirality</u> in stop₁ decay depends on stop mixing <u>and</u> neutralino mixing. It is easy to see why:

LSP	Allowed stop decays		Why
$\tilde{\chi}_1^0 = \tilde{B}_3$	$\tilde{t}_L \to t_L \tilde{\chi}_1^0$	$\tilde{t}_R \to t_R \tilde{\chi}_1^0$	U(1) couples L to L and R to R
$\tilde{\chi}_1^0 = \tilde{W}_3$	$ ilde{t}_L o t_L \tilde{\chi}_1^0$		SU(2) only acts on L
$\tilde{\chi}_1^0 = \tilde{H}_d^0$	none		Only couples to down-type
$\tilde{\chi}_1^0 = \tilde{H}_u^0$	$\tilde{t}_L \to t_R \tilde{\chi}_1^0$	$\tilde{t}_R \to t_L \tilde{\chi}_1^0$	Higgs couple L to R (mass term)

Bottom line: polarization of top is complicated function of susy parameters

Why does top polarization matter?

Top polarization:

$$\frac{dN}{d\cos\Theta^*} = \frac{1}{2}(1 + P\alpha \cos(\Theta^*))$$

- Where P is the polarization of the top
- α the "analyser quality", which is 1 for leptons (and -0.41 for b quarks)

<u>Right handed tops have higher P_{T} leptons \rightarrow higher transvese mass \rightarrow better acceptance</u>

 M_T distributions for M_{stop} =450 GeV M_{LSP} = 25 GeV — Right-polarized top

- Unpolarized top
- Left-polarized top

Limits for different polarization assumptions

For the chargino mode is even more complicated

What about "mixed" channels?

• So far: Only considered models with following decay chains, where <u>both</u> stops decayed the same way

– ie: branching ratios = 100%

• What about branching ratio ≠ 100% ?

- ie: the two stops can decay in two different ways

Mixed Decays

- The cut-and-count analysis is generic enough that it should have about the same sensitivity for mixed and unmixed decays
- This is one of the reasons why the cut-andcount analysis is crucial!
- But there is an important loophole

Mixed decay loophole: nearly degenerate chargino-LSP

- If one of the stop quarks decays through the chargino, this analysis has <u>no sensitivity</u>
- This is because the SM particles in the chargino decay are so soft that are not detectable → not enough jets

Mixed decay loophole: nearly degenerate chargino-LSP

- If one of the stop quarks decays through the chargino, this analysis has <u>no sensitivity</u>
- This is because the SM particles in the chargino decay are so soft that are not detectable → not enough jets

Mixed decay loophole: nearly degenerate chargino-LSP

- If one of the stop quarks decays through ulletthe chargino, this analysis has no sensitivity
- This is because the SM particles in the chargino decay are so soft that are not detectable \rightarrow not enough jet

End of (slightly) dirty laundry

The hole in sensitivity

The hole in sensitivity

Cascade decays

Hole is closed for 100% BR if gluino mass below ~ 1.3 TeV

Cascade decays

Hole is closed for 100% BR if gluino mass below ~ 1.3 TeV

Hole is ~ closed for stop₂ mass below ~ 550-600 GeV

Precision ttbar cross-section measurement

Precision ttbar cross-section measurement

Problem:

Such light stop would have also biased top mass measurement in unknown way.

Theory and expt σ (ttbar) depend on M_{top}

Situation not clear!

Boosted Events

- Design event selection for events recoiling against ISR
- ISR boost → momentum to LSP which is ~ at rest in stop rest frame
- Looks like we can get ~ 2σ sensitivity
 - To be combined with dilepton mode for ~ 3σ sensitivity

Conclusions

- No sign of stop quarks at CMS
 - Atlas has similar results
- These null searches are beginning to be a serious challenge for the natural SUSY concept
- There remain loopholes, even for relatively light top squarks
 - Some of them are being addressed with current data
- The higher energy data to be collected starting next year will extended the (exclusion) sensitivity to > 1 TeV