Cross Products: $(\vec{a} \times \vec{b})_k = \epsilon_{ijk} a_i b_j$.

Helpful Integrals: $\int d^3x = \int_0^\infty r^2 dr \int d\Omega$, $\int d\Omega = \int_0^\pi \sin\theta \, d\theta \int_0^{2\pi} d\phi = 4\pi$, $\int_0^\infty r^n e^{-r/a} \, dr = n! \, a^{1+n}$.

Schrödinger Equation: $i\hbar \frac{\partial}{\partial t} |\Psi\rangle = \hat{H} |\Psi\rangle$ w/ Hamiltonian $\hat{H} = \frac{\hat{p}^2}{2m} + V$

Harmonic oscillator (1d): For $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2$, raising/lowering operators $a_{\pm} = \frac{1}{\sqrt{2m\hbar\omega}}(m\omega\hat{x} \mp i\hat{p})$, $\hat{x} = \sqrt{\frac{\hbar}{2m\omega}}(a_+ + a_-)$, $\hat{p} = i\sqrt{\frac{\hbar m\omega}{2}}(a_+ - a_-)$, $[a_-, a_+] = 1$, $\hat{H} = \hbar\omega(a_+a_- + 1/2)$, $E_n = \hbar\omega(n + 1/2)$, $a_+\psi_n = \sqrt{n+1}\psi_{n+1}$, $a_-\psi_n = \sqrt{n}\psi_{n-1}$, $\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}e^{-\frac{m\omega}{2\hbar}x^2}$.

Laplacian: $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ (Cartesian), $\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial^2}{\partial \phi^2} \right)$ (spherical).

QM in 3D: Position operator $\vec{x}=(x,y,z)$ and momentum operator $\vec{p}=(p_x,p_y,p_z)$ in Cartesian coords. Position space $p_x=-i\hbar\frac{\partial}{\partial x}, p_y=-i\hbar\frac{\partial}{\partial y}, p_z=-i\hbar\frac{\partial}{\partial z},$ so $\vec{p}=-i\hbar\nabla$ and $H=-\frac{\hbar^2}{2m}\nabla^2+V$. Commutators $[x,p_x]=[y,p_y]=[z,p_z]=i\hbar$, all other commutators of x,y,z,p_x,p_y,p_z are zero.

Spherically symmetric potentials: $V(\vec{r}) = V(r)$, eigenstates $\psi_{n,\ell,m} = R_{n,\ell}(r)Y_{\ell}^{m}(\theta,\phi)$, radial momentum $\hat{p}_r = -i\hbar\left(\frac{\partial}{\partial r} + \frac{1}{r}\right)$ and $\hat{p}_r^2 = -\hbar^2\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right)$.

Radial equation: $\hat{H}_{\ell}R_{\ell}(r) = \left[\frac{\hat{p}_r^2}{2m} + V(r) + \frac{\hbar^2\ell(\ell+1)}{2mr^2}\right]R_{\ell}(r) = E_{\ell}R_{\ell}(r)$.

Harmonic oscillator (3d): $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{r}^2$. Operator $\hat{a}_{\ell} = \frac{1}{\sqrt{2m\hbar\omega}}(i\hat{p}_r + m\omega r - \frac{(\ell+1)\hbar}{r}); \hat{H}_{\ell} = \hbar\omega(\hat{a}_{\ell}^{\dagger}\hat{a}_{\ell} + l + 3/2).$ \hat{a}_{ℓ} raises ℓ by one and lowers E_{ℓ} by $\hbar\omega$ while \hat{a}_{ℓ}^{\dagger} does the opposite. $[\hat{a}_{\ell}, \hat{a}_{\ell}^{\dagger}] = \frac{\hat{H}_{\ell+1} - \hat{H}_{\ell}}{\hbar\omega} + 1$.

Spherical Harmonics: $Y_{\ell}^{m}(\theta,\phi)$ orthogonal in both ℓ,m . Simplest harmonics:

$$Y_0^0 = \left(\frac{1}{4\pi}\right)^{1/2} \qquad Y_1^0 = \left(\frac{3}{4\pi}\right)^{1/2} \cos\theta \qquad Y_1^{\pm 1} = \mp \left(\frac{3}{8\pi}\right)^{1/2} \sin\theta \, e^{\pm i\phi}$$

Hydrogen atom: $V(r) = -\frac{e^2}{4\pi\epsilon_0}\frac{1}{r}$, energies $E_n = -\frac{\hbar^2}{2ma_0^2n^2} = -\mathcal{R}/n^2$, Rydberg constant $\mathcal{R} = 13.6$ eV, Bohr radius $a_0 \equiv \frac{4\pi\epsilon_0\hbar^2}{me^2} = 0.53$ Å, ground state wavefunction $\psi_{1,0,0}(r,\theta,\phi) = \frac{1}{\sqrt{\pi a_0^3}}e^{-r/a_0}$, Operator $\hat{a}_\ell = \frac{a_0}{\sqrt{2\hbar}}(i\hat{p}_r + \frac{\hbar}{a_0(\ell+1)} - \frac{(\ell+1)\hbar}{r})$; $\hat{H}_\ell = \frac{\hbar^2}{ma_0^2}(\hat{a}_\ell^{\dagger}\hat{a}_\ell - \frac{1}{2(\ell+1)^2})$. \hat{a}_ℓ raises ℓ by one while \hat{a}_ℓ^{\dagger} does the opposite. $[\hat{a}_\ell, \hat{a}_\ell^{\dagger}] = \frac{ma_0^2}{\hbar^2}(\hat{H}_{\ell+1} - \hat{H}_\ell)$.

Angular Momentum: $[\hat{L}_i, \hat{L}_j] = i\hbar\epsilon_{ijk}\hat{L}_k$. $\hat{L}^2|\ell, m\rangle = \hbar^2\ell(\ell+1)|\ell, m\rangle$, $\hat{L}_z|\ell, m\rangle = \hbar m|\ell, m\rangle$.

Raising and lowering operators: $\hat{L}_{\pm} = \hat{L}_x \pm i\hat{L}_y$ for eigenstates of \hat{L}^2 and \hat{L}_z . Then: $\hat{L}_+ |\ell, m\rangle = \hbar\sqrt{\ell(\ell+1) - m(m+1)} |\ell|$ and $\hat{L}_- |\ell|, m\rangle = \hbar\sqrt{\ell(\ell+1) - m(m-1)} |\ell|, m-1\rangle$. In terms of these operators, $\hat{L}_x = \frac{1}{2}(\hat{L}_+ + \hat{L}_-)$ and $\hat{L}_y = \frac{1}{2i}(\hat{L}_+ - \hat{L}_-)$.

Matrix operators: $M_{ij} = \left\langle u_i \middle| \widehat{M} \middle| u_j \right\rangle$ where the $|u_k\rangle$'s are the basis vectors.

Spin operators:

$$\widehat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \widehat{S}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \widehat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$