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Our next goal is the hydrogen atom, but as a warmup, I’d like to first consider
the algebraic solution to the 3d harmonic oscillator in spherical coordinates. As you
have already seen, the solution in Cartesian coordinates is relatively simple: separa-
ble solutions factorize, and we can use three copies of our one-dimensional algebraic
approach to find the energy eigenstates. But this approach somewhat obscures the
physical meaning of the solutions – the potential is spherically symmetric, so the
most natural coordinate system for the solutions is the one that manifests this sym-
metry.

For harmonic oscillator in three dimensions, the potential in spherical coordinates
is simply

V (r) =
1

2
mω2r2

The angular dependence of the energy eigenstates in spherical coordinates is
entirely encoded by the spherical harmonic Y m

` . Our task is now simply to solve
the radial dependence to find the radial wavefunction R`(r). The effective radial
Hamiltonian H` is simply

H` =
p2r
2m

+
1

2
mω2r2 +

~2`(` + 1)

2mr2

This radial Hamiltonian has the form of the sum of squares. When we encountered
such a Hamiltonian for the 1d harmonic oscillator, this suggested that we try to write
it as the product of two operators. This turned out to lead us to a complete algebraic
solution! So let’s do the same thing here. Consider the operator

a` ≡
1√

2m~ω

[
ipr −

(` + 1)~
r

+ mωr

]
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In analogy with the 1d harmonic oscillator, this will be our lowering operator. Its
hermitian conjugate a†` is the raising or creation operator. As you can check, these
operators satisfy the following commutation relation:

[a`, a
†
`] =

(` + 1)~
mωr2

+ 1

This is more complicated than the commutation relation satisfied by the rais-
ing/lowering operators of the 1d harmonic oscillator, but still relatively compact.
Now notice that the product of a†` and a` is

a†`a` =
1

2m~ω

(
−ipr −

(` + 1)~
r

+ mωr

)(
ipr −

(` + 1)~
r

+ mωr

)
(1)

=
1

2m~ω

(
p2r +

`(` + 1)~2

r2
+ m2ω2r2 − (2` + 3)~mω

)
(2)

so that we can write the radial Hamiltonian H` as

H` = ~ω
(
a†`a` + (` + 3/2)

)
This looks a lot like the harmonic oscillator in 1d, albeit with the appearance of ex-
tra ` dependence. And notice that we have already picked up something that looks
like the ground state energy, complete with the factor of 3/2 you found in Cartesian
coordinates.

Now notice something interesting: we can write the commutator of a` and a†`
in terms of the radial Hamiltonian H` and the radial Hamiltonian corresponding to
` + 1:

[a`, a
†
`] =

H`+1 −H`

~ω
+ 1

This is because

H`+1 −H` =
~2

2mr2
[(` + 1)(` + 2)− `(` + 1)] =

~2(` + 1)

mr2

This observation allows us to easily work out the commutator of a` and H`, for
example:

[a`, H`] = ~ω[a`, a
†
`a`] = ~ω[a`, a

†
`]a` = (H`+1 −H` + ~ω)a`
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Now imagine we knew a radial eigenstate R` with energy En,

H`R` = EnR`

Then acting on both sides with a` and commuting it past H` with our above com-
mutator gives

Ena`R` = a`H`R` = (H`a` + [a`, H`])R` = (H`+1 + ~ω)a`R`

Cleaning things up, we have

H`+1(a`R`) = (En − ~ω)(a`R`)

This means that acting on R` with the lowering operator a` gives us a new radial state
a`R`, which is not an eigenstate of H`, but is an eigenstate of a radial Hamiltonian
H`+1 with a larger separation constant `+ 1 and smaller energy eigenvalue En− ~ω.
As we’ll see next, this is enough to obtain a complete algebraic solution to the
3D harmonic oscillator, and provides a blueprint for the algebraic solution to the
hydrogen atom.

To recap, we found that the operator equation satisfied by radial eigenstates of
the 3d harmonic oscillator in spherical coordinates,

H`R` = EnR`

could be solved by introducing a lowering operator

a` ≡
1√

2m~ω

[
ipr −

(` + 1)~
r

+ mωr

]
and the corresponding creation operator, a†`, with commutator

[a`, a
†
`] =

(` + 1)~
mωr2

+ 1

The radial Hamiltonian H` could be written in terms of these as

H` = ~ω
(
a†`a` + (` + 3/2)

)
We then noted that, given a solution R` with energy E`, then a`R` was itself an
eigenstate of H`+1 with energy En − ~ω – the angular momentum was higher, and
the total energy lower:
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H`+1(a`R`) = (En − ~ω)(a`R`)

If we repeat this process over and over – that is to say, acting on a`R` with a`+1,
etc. – we will eventually get to a state RL that is an eigenstate of some radial Hamil-
tonian HL where all of the radial kinetic energy has been exhausted. The specific
value of L will be determined by the En you started with, but we only care that it
exists. With little radial kinetic energy, this is the quantum mechanical equivalent
of a circular orbit (as we will see, they still have a little bit of radial kinetic energy
– this is the zero point energy in the radial direction). And although we have not
rigorously established the connection to angular momentum yet, the fact that ` in-
creases as the radial energy decreases means we are trading radial kinetic energy for
angular momentum.

If we then acted on this state with aL, the radial kinetic energy would go negative.
This is unphysical, so avoiding an unphysical conclusion implies that the state RL
should be annihilated by aL,

aLRL = 0

Knowing this, if we act on this state with HL, we have

HLRL = ~ω
(
a†LaL + (L+ 3/2)

)
RL = (L+ 3/2)~ωRL

Now L is subject to the same constraints as general ` – it must be a non-negative
integer. So it follows that the lowest-energy state of all corresponds to L = 0, with
energy E = 3

2
~ω, just as you found in Cartesian coordinates. Higher integer values

of L correspond to higher-energy circular orbits. (Remember, the value of L depends
on the energy En you started with).

There is one circular orbit corresponding to every non-negative integer. We can
find the explicit functional form of each one of them because aLRL = 0 is actually a
pretty simple first-order linear differential equation,(

∂

∂r
+

1

r
− L+ 1

r
+

mω

~
r

)
RL(r) = 0

The solutions are
RL(r) = CrL exp

[
−r2/4r20

]
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where r0 =
√
~/2mω is the natural scale of the exponential envelope and C is a

normalization constant. Thus we have found a whole class of radial wavefunctions
– the “circular” ones – explicitly. We can then find all of the other eigenstates by
starting with a given circular wavefunction and acting with the raising operator a†L
to create a less “circular” state. Because the raising operator both differentiates and
multiplies by powers of r, acting with it creates more nodes in the radial wavefunc-
tion. This makes sense: nodes mean larger kinetic energy.

The relation between different radial eigenstates, their total energy, and their
angular momentum (encoded in `) is best illustrated by the following picture:

For the 1d harmonic oscillator, we used the raising and lowering operators to find
one “ladder” of energy eigenstates. For the 3d harmonic oscillator, the appearance
of ` means there is now a whole tower of ladders indexed by `, with towers of raising
and lowering operators also indexed by `.

This is a beautiful and elegant way of solving the 3d harmonic oscillator, one that
brings to bear all of the tools we have developed thus far in quantum mechanics. As
we will now see, an analogous approach is perfect for the hydrogen atom as well.

5


