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Now we turn to our ultimate goal: the hydrogen atom. Quantum mechanically,
this is described by the kinetic energies of the proton, the electron, and the Coulomb
force between them,

H =
p2
p

2mp

+
p2
e

2me

− e2

4πε0|~xe − ~xp|
This generally looks like a complicated Hamiltonian involving two coordinates, but
as you will show on the problem set, in the center of mass frame of the hydrogen atom
this reduces to a problem that depends only on the relative position ~r = ~xe−~xp and
the reduced mass µ ≡ memp

me+mp
≈ me. In terms of these variables, the time-independent

Schrödinger equation takes the form

− ~2

2µ
∇2

rψr −
e2

4πε0r
ψr = Erψr

where Er is the energy associated with the relative separation (the rest being asso-
ciated with the center of mass kinetic energy); we will henceforth drop the subscript
r. Since the V → 0 as r →∞, there are both bound state solutions with E < 0 and
scattering states with E ≥ 0. Here we will be interested in the bound states.

Solutions to this equation with E < 0 – the bound energy eigenstates – will be of
the general form ψn,`,m(r, θ, φ). Since the potential is central, we can use our existing
solution to the angular part in terms of spherical harmonics Y m

` (θ, φ), and reduce the
problem to finding the radial wavefunctions R`(r). As we saw last lecture, solving
the problem amounts to finding R`(r) satisfying

H`R`(r) = ER`(r)

where now the effective radial Hamiltonian is

H` =
p2
r

2µ
+
`(`+ 1)~2

2µr2
− e2

4πε0r
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It is helpful to organize the problem in in terms of the length scale

a0 ≡
4πε0~2

µe2

which is known as the Bohr radius. Then we have

H` =
p2
r

2µ
+

~2`(`+ 1)

2µr2
− ~2

µa0r

At this point, we will attempt exactly what we already did with the harmonic
oscillator: to factorize the Hamiltonian into the product of two operators, up to a
constant. In this case, consider the lowering operator

a` ≡
a0

~
√

2

(
ipr −

(`+ 1)~
r

+
~

(`+ 1)a0

)
Much as with the 3d harmonic oscillator, the commutator of a` and the raising

operator a†` can be written as

[a`, a
†
`] =

a2
0

2~2
(−i~(`+ 1)[pr, 1/r]) =

(`+ 1)a2
0

2r2
=
a2

0µ

~2
(H`+1 −H`)

As you can check, we can write the radial Hamiltonian as

H` =
~2

µa2
0

(
a†`a` −

1

2(`+ 1)2

)
Just as with the harmonic oscillator, we can now compute the commutator of a` with
H`, giving

[a`, H`] =
~2

µa2
0

[a`, a
†
`a`] =

~2

µa2
0

[a`, a
†
`]a` = (H`+1 −H`)a`

In other words, we have
a`H` = H`+1a`

1 Finding the allowed energies

Now we can proceed to find all of the radial wavefunctions, exactly like we did for
the harmonic oscillator. If I give you a solution to

H`R` = EnR`
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and we act on both sides with a`, we find

Ena`R` = a`H`R` = H`+1a`R`

From this we learn that a`R` is an eigenstate of H`+1 with the same energy En. So
acting with the lowering operator has given us a new state with the same energy but
more angular momentum, i.e. larger `. This is slightly different from the harmonic
oscillator.

You might think we could make infinitely many solutions by acting suggestively
with a`+1, a`+2, . . . , but once again we cannot continue this exercise ad infinitum.
Here the argument is a little more subtle, because E is not decreasing. Still, for a
fixed value of E, the effective potential has a positive term that goes like +`(`+1)/r2

and a negative term that goes like −1/r. As ` increases, the coefficient of the +1/r2

term increases, while the coefficient of the Coulomb term is fixed. For large enough
`, E is less than the minimum of the effective potential, and there is no longer a
physically allowed bound state, because that would require negative radial kinetic
energy.

Thus there must be a maximum value of `, call it L, for which

aLRL = 0
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Just as in the 3d harmonic oscillator, these solutions are circular orbits – they have
the largest possible angular momentum for a given energy. The energy of such a
solution is

HLRL = − ~2

2µa2
0(L+ 1)2

Now L is a non-negative integer, so L+1 is a positive integer. Let’s call it n, with
n = 1, 2, 3, . . . ; this is known as the principal quantum number. Thus the allowed
energies of circular orbits have the form

En = − ~2

2µa2
0n

2
= − e2

8πε0a0n2

It is conventional to define the Rydberg constant R as

R ≡ ~2

2µa2
0

= 13.6056923 eV

In terms of this, the allowed energies simply take the form

En = −R
n2

Note that the energy increases as n increases, and as n → ∞ this asymptotes to
E → 0, the limit of the bound states.

Acting on an eigenstate R` of the radial Hamiltonian H` with the lowering oper-
ator a` gave us an eigenstate of the radial Hamiltonian H`+1 with the same energy.
Increasing ` while keeping the total energy fixed would eventually lead to an unphys-
ical state whose total energy E was less than the minimum of the effective potential
Veff . This could be avoided if the ladder instead terminates, i.e., there is some state
RL such that

aLRL = 0

Just as in the 3d harmonic oscillator, these solutions are circular orbits – they
have the largest possible angular momentum for a given energy. The energy of such
a solution is

HLRL = − ~2

2µa2
0(L+ 1)2
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Now L is a non-negative integer, so L+1 is a positive integer. Let’s call it n, with
n = 1, 2, 3, . . . ; this is known as the principal quantum number. Thus the allowed
energies of circular orbits have the form

En = − ~2

2µa2
0n

2
= − e2

8πε0a0n2

It is conventional to define the Rydberg constant R as

R ≡ ~2

2µa2
0

= 13.6056923 eV

In terms of this, the allowed energies simply take the form

En = −R
n2

Note that the energy increases as n increases, and as n → ∞ this asymptotes to
E → 0, the limit of the bound states.

Although we arrived at the energies for the circular orbits, these are the allowed
energies, period. We can create less circular orbits by acting with a†`, but this just
makes states with lower ` and the same energy, all the way down to ` = 0. These
states are all degenerate with the same En. For a given n, the maximum allowed
value of ` is L = n− 1, corresponding to the circular orbit, and lower values of ` can
be obtained by acting with the lowering operators.

Graphically, the relation between n and ` for these solutions is in the Figure in
the next page. Thus for a given n, we have a whole host of degenerate states with

0 ≤ ` ≤ n− 1

Also recall that for a state of fixed `, the azimuthal quantum number m could run
over

−` ≤ m ≤ `

So the degeneracy of a given En is

n−1∑
`=0

∑̀
m=−`

1 =
n−1∑
`=0

(2`+ 1) = n2

As you will see in 115C, excited (higher-energy) states of hydrogen may be ren-
dered unstable to decay into lower energy states. When this occurs, the energy is
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released in the form of energy, typically electromagnetic radiation. Similarly, lower-
energy eigenstates can be induced to transition into higher-energy states by absorbing
energy. The amount of energy absorbed or emitted in a transition must be equal to
the energy splitting, and thus follows the form

E = Ei − Ef = −R

(
1

n2
i

− 1

n2
f

)

This was obseved experimentally in the 19th century, and its explanation (and the
calculation of R in terms of fundamental parameters) is one of the great triumphs
of quantum mechanics.

It is conventional to label the corresponding radial eigenfunctions by both their
principle quantum number n and their value of `, Rn,`(r). So, putting it all together,
our solutions for the energy eigenstates of the hydrogen atom have the form

ψn,`,m(r, θ, φ) = Rn,`(r)Y
m
` (θ, φ)

and are separately orthogonal in the quantum numbers n, `, and m.
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1.1 Finding the radial functions

We can find the explicit form of the Rn,` using the same trick as the harmonic
oscillator. We know the circular orbits have ` = n − 1, and are annihilated by the
corresponding lowering operator,

an−1Rn,n−1 = 0

Recall that lowering operators are just

an−1 ≡
a0√

2

(
∂

∂r
− n

r
+

1

na0

)
where I have written out pr explicitly. (Please forgive the notation – the a0 on the
RHS is the Bohr radius.) So the circular orbits are solutions to first-order ODEs(

d

dr
− n

r
+

1

na0

)
Rn,n−1(r) = 0

The solutions are of the form

Rn,n−1(r) = Crn−1e−r/na0

where C is a normalization constant. These have the form of a fixed power of r
multiplying a falling exponential. Normalizing these wavefunctions gives

Rn,n−1(r) =
1√

(2n)!

(
2

na0

)3/2(
2r

na0

)n−1

e−r/na0

The ground state corresponds to n = 1, and tacking on the spherical harmonic part
gives the full ground state wavefunction

ψ1,0,0 =
1√
πa3

0

e−r/a0

We have found all of the circular orbits, but now we can get more eccentric orbits
(with lower `) by acting on the circular orbits with raising operators. For example,
up to normalization

Rn,n−2 = a†n−2Rn,n−1 ∝
(
∂

∂r
+
n− 1

r
+

1

(n− 1)a0

)
Rn,n−1

which you can work out explicitly. As with the harmonic oscillator, acting with
raising operators increases the number of wiggles or nodes in the wavefunction, in-
creasing the radial kinetic energy. The radial wavefunctions turn out to be a class of
special functions known as Laguerre polynomials, whose explicit form is not partic-
ularly interesting for us – if you need it, you can look it up.
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