Compact Notation

The Levi-Civita symbol in three dimension, $\epsilon_{i j k}$, where i, j, and k are integers between 1 and 3 , is defined as:

- $\epsilon_{i j k}=0$ if any of i, j, and k are the same. For example $\epsilon_{122}=0$.
- $\epsilon_{i j k}=+1$ if $i j k$ is an even permutation of 123 . So $\epsilon_{123}=\epsilon_{312}=\epsilon_{231}=+1$.
- $\epsilon_{i j k}=-1$ if $i j k$ is an odd permutation of 123. So $\epsilon_{132}=\epsilon_{321}=\epsilon_{132}=-1$.

Another convention that leads to a more compact notation is that sum over repeated indeces is implied.
For example, imagine that we have vectors \vec{a} and \vec{b} in 3D with components $\left(a_{x}, a_{y}, a_{z}\right)=$ $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{x}, b_{y}, b_{z}\right)=\left(b_{1}, b_{2}, b_{3}\right)$. Then we could write
$|\vec{a}|^{2}=\sum_{i} a_{i} a_{i}=a_{i} a_{i}$
$\vec{a} \cdot \vec{b}=\sum_{i} a_{i} b_{i}=a_{i} b_{i}$
$(\vec{a} \times \vec{b})_{k}=\sum_{i, j} \epsilon_{i j k} a_{i} b_{j}=\epsilon_{i j k} a_{i} b_{j}$.
The Levi-Civita symbol allows you to write cross-products in a very compact way. If you do not believe me, write out explicitely the components of $\vec{a} \times \vec{b}$ and check for yourself.
Furthermore, the commutation relations of the angular momentum operator can be written in compact form as
$\left[L_{i}, L_{j}\right]=i \epsilon_{i j k} \hbar L_{k}$
As you can see, the $\epsilon_{i j k}$ factor insures that the commutator of any component of angular momentum with itself $(i=j)$ is zero, as it should; further, $\left[L_{i}, L_{j}\right]=-\left[L_{j}, L_{i}\right]$ since $\epsilon_{i j k}=-\epsilon_{j i k}$; finally, the only non-zero term in the implied sum over k on the right side is the one with $k \neq i$ and $k \neq j$, meaning that the commutator of two different components of \vec{L} gives $\pm \hbar$ times the third component, with the sign determined by the order of the two elements of the commutator.

