
Addition of Angular Momentum

Nathaniel Craig

1 Addition of angular momentum

You have now learned about the quantum mechanical analogue of angular momen-
tum, both the familiar extrinsic angular momentum corresponding to the operator
L, and a completely new intrinsic angular momentum quantity, spin, corresponding
to the operator S. Both are generators of rotations – the former rotations in three
spatial dimensions, the latter rotations in the “internal” space of spins – and so it
follows that they have the same algebraic structure of commutators.

It is all well and good to have understood the orbital or spin angular momentum
properties of a given state, but more generally we will be interested systems where
we combine different types of angular momentum, and would like to relate the total
angular momentum of a system to the angular momenta of its constituents. Classi-
cally we can add angular momenta, and quantum mechanically we can do so as well.
There are generally two situations of interest:

• The total angular momentum of a single particle, i.e. its combined spin and
orbital angular momentum. We will usually denote this with the operator ~J ,
to distinguish it from ~L and ~S, with the definition ~J = ~L + ~S. In studying
the hydrogen atom, we have learned to label the orbital wavefunctions of the
electron by their orbital angular momentum. But electrons have spin, so if we
are careful we should be able to describe the total angular momentum of the
electron in terms of the sum of its spin and orbital angular momentum.

• The total spin or total orbital angular momentum of two (or more) particles.
Consider again the hydrogen atom – in solving the hydrogen atom we ignored
the dynamics of the proton to find the electron wavefunction, which is perfectly
fine because the proton is so much heavier than the electron and can be treated
like a static source. But if we are interested in the total spin of the hydrogen
atom, we need to account for the spins of both the electron and the proton.
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In each case we would like to relate the total angular momentum to the angular
momentum of the two constituents.

2 Addition of spins

Let’s start by asking what happens if we have two distinct particles of spin s1 and
s2, and we want to figure out the total spin of this system. As an example, you can
think of the total spin of the hydrogen atom, which is the sum of spins of the proton
and the electron. (In this case, consider them in the ground state so we can neglect
orbital angular momentum.)

We are interested in the operator that consists of the sum of the spin operators
for the two particles,

S = S1 + S2

Now this is the first time we have attempted to carefully treat a quantum mechanical
system involving two particles. We will devote much more time to this shortly, but
for the time being, if the two particles are distinct and the properties of the first
particle are entirely independent of the properties of the second particle, you should
understand this to mean that the Hilbert space factorizes into products of states,
|1〉⊗|2〉, where ⊗ is the Kronecker product. The spin operator acting on this product
factorizes as well, i.e.

S = S1 ⊗ I + I ⊗ S2

i.e. S1 acts only on the first particle, and S2 acts only on the second particle. There
are some more general subtleties that we will encounter when the particles are indis-
tinguishable, but we’ll discuss that in the next few lectures.

We can go ahead and form raising and lowering operators for the total spin S
much as before,

S± = (S1x + iS1y) + (S2x + iS2y)

as well as the square of the total angular momentum, S2, the z-component, Sz, etc.

So far, so good. Now we’d like to figure out how the spin states of the two par-
ticles are related to the total spin of the system. Imagine, for example, that particle
1 is in the spin state |s1m1〉 (where s1 is its eigenvalue with respect to (S1)

2 and
m1 is its eigenvalue with respect to S1z), and particle 2 is in the spin state |s2m2〉
with respect to S2. We denote this total state as |s1m1〉|s2m2〉 (or more explicitly
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|s1m1〉 ⊗ |s2m2〉).

What is the total spin of this state, and its spin in the z direction? That is to
say,

|sm〉 ←→
?
|s1m1〉|s2m2〉

Perhaps your first thought is that this problem must be trivial – i.e., we can
just algebraically solve for s,m in terms of s1,m1, s2, and m2. This would be true
if S2, Sz, (S

1)2, S1z, (S
2)2, and S2z formed a complete set of commuting observables.

But they do not! We have

S2 = (S1 + S2)
2 = S2

1 + S2
2 + 2S1 · S2 (1)

Sz = S1z + S2z (2)

(In the first line we have used the fact that S1 and S2 commute.) From this we can
see that m = m1 + m2, but s is less clear. In particular, we can see clearly that S2

does not commute with S1 or S2 individually. For instance,

[S1z, S
2] = 2[S1z,S1 · S2] = 2[S1z, S1xS2x + S1yS2y] = 2i~(S1yS2x − S1xS2y)

is nonzero. This tells us that S1z and S2 do not share a complete set of eigenstates.
So if we want to relate total spin to the spins of each particle, we are going to have
to go between two different sets of eigenstates.

What are the two good sets of eigenstates? That is to say, what are good sets
of commuting observables for this system? By construction, the spins of the two
individual particles do indeed form a complete set of commuting operators, so we
know S2

1 , S1z, S
2
2 , and S2z are complete, and we can describe the system in terms

of s1, s2,m1,m2. This is sometimes called the “uncoupled representation”, since it
describes the spins of the two particles separately.

What about a set of observables involving S2, Sz? The first complete set had
four quantities associated with it, so you might expect we can add two operators to
S2, Sz to form a complete set. A sensible choice is S2

1 , S
2
2 , since e.g.

[S2
1 , S

2] = 2[S2
1 ,S1 · S2] = 0

and you can check for yourself that all other commutators vanish. The relevant quan-
tum numbers are s,m, s1, s2; this is sometimes called the “coupled representation”
since it describes the total spin of the system. This also forms a complete set of
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commuting observables. Thus we expect that we can describe this system in terms
of

S2
1 , S1z, S

2
2 , S2z or S2, Sz, S

2
1 , S

2
2

with corresponding quantum numbers s1, s2,m1,m2 or s,m, s1, s2. To be super ex-
plicit, in terms of operators, eigenstates, and eigenvalues, we have in the former
case 

S2
1

S1z

S2
2

S2z

 |s1m1〉|s2m2〉 = ~2


s1(s1 + 1)
m1/~

s2(s2 + 1)
m2/~

 |s1m1〉|s2m2〉 (3)

and in the latter case
S2

Sz

S2
1

S2
2

 |sms1 s2〉 = ~2


s(s + 1)
m/~

s1(s1 + 1)
s2(s2 + 1)

 |sms1 s2〉 (4)

3 Relating the spin bases

Now it just remains to figure out how we go back and forth between the two bases.
We expect very generally for them to be related by linear combinations with various
coefficients, i.e. a given state of definite s,m can be written as

|sms1s2〉 =
∑

m1+m2=m

Cs1 s2 s
m1 m2 m

|s1m1〉|s2m2〉

where the C are numerical coefficients given by the usual completeness relation,

Cs1 s2 s
m1 m2 m

≡ (〈s1m1|〈s2m2|)|sms1s2〉

There is obviously a general procedure for working out these coefficients, but for the
sake of definiteness, let’s start by working out a simple example. The simplest case
is that of the hydrogen atom where s1, s2 = 1

2
. Imagine further that we start with

a state where both spins are up, i.e. m1 = m2 = 1
2
. We can just work out what

happens when we act with Sz on this state:
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Sz (|1/2 1/2〉|1/2 1/2〉) = (S1z|1/2 1/2〉) |1/2 1/2〉+ |1/2 1/2〉S2z (|1/2 1/2〉) (5)

=
1

2
~|1/2 1/2〉|1/2 1/2〉+

1

2
~|1/2 1/2〉|1/2 1/2〉 (6)

= ~|1/2 1/2〉|1/2 1/2〉 (7)

so we conclude m = 1 – which is no surprise, since we knew m = m1 + m2. What
about finding s? Well, let’s act with S2. Recall we have S2 = (S1 + S2)

2 = S2
1 +

S2
2 + 2S1 ·S2, but we’d like to get this into a form that acts simply on the uncoupled

representation, so we use

Six =
1

2
(Si+ + Si−) (8)

Siy =
i

2
(Si− − Si+) (9)

for i = 1, 2 to write

S1 · S2 =
1

2
(S1+S2− + S1−S2+) + S1zS2z

Then we have very generally

S1 · S2|s1m1〉|s2m2〉 =
~2

2

√
s1(s1 + 1)−m1(m1 + 1)

√
s2(s2 + 1)−m2(m2 − 1)|s1m1 + 1〉|s2m2 − 1〉

+
~2

2

√
s1(s1 + 1)−m1(m1 − 1)

√
s2(s2 + 1)−m2(m2 + 1)|s1m1 − 1〉|s2m2 + 1〉

+~2m1m2|s1m1〉|s2m2〉

This should make it even more clear that the states |s1m1〉|s2m2〉 are not eigen-
states of S2, since (part of) S2 acting on such a state gives back a linear combination
of states with other values of m1,m2.

3.1 |1/2 1/2〉|1/2 1/2〉
Putting this to work on our specific case of |1/2 1/2〉|1/2 1/2〉, we have

S1 · S2|1/2 1/2〉|1/2 1/2〉 =
~2

4
|1/2 1/2〉|1/2 1/2〉
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and so

S2|1/2 1/2〉|1/2 1/2〉 = ~2
[
2× 1

2
(
1

2
+ 1) +

1

2

]
|1/2 1/2〉|1/2 1/2〉 = 2~2|1/2 1/2〉|1/2 1/2〉

from which we conclude s = 1. Thus we find (suppressing the s1, s2 on the LHS for
simplicity)

|1 1〉 = |1/2 1/2〉|1/2 1/2〉
i.e., this is an eigenstate of both sets of operators.

Now what is going on here? Well, we know that the combined spin in ẑ is the sum
of the individual spins in ẑ, which in this case was m1 +m2 = 1. We also know that
for a general spin state, −s ≤ m ≤ s, so it had to be the case that s ≥ 1. Finally,
it’s physically sensible that the total spin of the two-particle system can’t be larger
than the sum of the total spins of each particles (though it could be smaller, if the
spins partially cancel), which tells us s ≤ 1. This combination of facts uniquely fixes
the answer, in agreement with our direct calculation. Although we cannot guess the
answer for other spin states, there is a simple procedure for finding the rest.

Now we can find other eigenstates in the coupled representation by acting with
S− on the |11〉 state to lower the z component. This gives

S−|11〉 =
√

2~|10〉 = S−|1/2 1/2〉|1/2 1/2〉 = (S1−|1/2 1/2〉) |1/2 1/2〉+ |1/2 1/2〉 (S2−|1/2 1/2〉)(10)

= ~ (|1/2 − 1/2〉|1/2 1/2〉+ |1/2 1/2〉|1/2 − 1/2〉)(11)

where on the LHS we just used the definition of the lowering operator, and on the
RHS we used the definition of the lowering operator in terms of lowering operators
acting on each of the particles. Thus we conclude

|10〉 =
1√
2

(|1/2 − 1/2〉|1/2 1/2〉+ |1/2 1/2〉|1/2 − 1/2〉)

Acting once more with S−, we find

S−|10〉 =
√

2~|1−1〉 =
√

2~|1/2 − 1/2〉|1/2 − 1/2〉

so
|1−1〉 = |1/2 − 1/2〉|1/2 − 1/2〉

That exhausts our ability to find states by acting with S−, but we are clearly not
done; there are four eigenstates of si,mi and we have found only three of s,m. Clearly
the orthogonal combination we are missing is 1√

2
(|1/2 − 1/2〉|1/2 1/2〉 − |1/2 1/2〉|1/2 − 1/2〉),
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and if we act with S2 we find unsurprisingly that this is a state with s = 0. Thence
the final eigenstate is

|00〉 =
1√
2

(|1/2 − 1/2〉|1/2 1/2〉 − |1/2 1/2〉|1/2 − 1/2〉)

and we are done. (Equivalently, you could have just checked by acting on |00〉 with
raising and lowering operators; they both annihilate the state, and this fixes the
coefficients.)

We have found all the nonzero coefficients; the nonzero ones are (in the Cs1 s2 s
m1 m2 m

notation)

C
1/2 1/2 1
1/2 1/2 1 = 1 C

1/2 1/2 1
− 1/2 − 1/2−1 = 1 (12)

C
1/2 1/2 1
1/2 − 1/2 0 =

1√
2

C
1/2 1/2 1
− 1/2 1/2 0 =

1√
2

(13)

C
1/2 1/2 1
1/2 − 1/2 0 = − 1√

2
C

1/2 1/2 1
− 1/2 1/2 0 =

1√
2

(14)

and the rest vanish.

This procedure generalizes naturally. In general, combining states of spins s1 and
s2 can yield states of total spin ranging from s1 + s2 ≥ s ≥ |s1 − s2|. The intuition
is that the spins can either add completely in parallel (s = s1 + s2) or completely
antiparallel (s = |s1− s2|) or anything in between. To prove this, note that the max
value of m is

mmax = s1 + s2

so that
smax = s1 + s2

as claimed. To find the minimum value, note in the uncoupled representation that
there are (2s1 + 1)(2s2 + 1) independent eigenstates corresponding to the possible
values of m1,m2. This must also be the dimensionality of the space of eigenstates of
S2, Sz. So now we have a counting exercise, lowering smax in unit steps until we get
to (2s1 + 1)(2s2 + 1) states. For a given s, the number of independent eigenstates is
2s + 1, so smin satisfies

s1+s2∑
s=smin

(2s + 1) = (2s1 + 1)(2s2 + 1)
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from which one finds smin = |s1 − s2| as claimed.

Now for each state of spin s, m ranges as usual from −s to s, and for each such
state the coefficients relating these to the |s1m1〉|s2m2〉 can be obtained by using
the raising and lowering operators.

|smax, smax〉

|smax, smax − 1〉

|smax, −smax〉

|smax − 1, smax − 1〉

|smax − 1, smax − 2〉

|smax − 1, −(smax − 1)〉

|smin, smin〉

|smin, −smin〉

b

b

b

b

b

b
b

b

b

b

b

b
b

b

b
b

b

S−

S−

S−

S−

S−

S−

Figure 1: Sketch of how you can work out all the states of definite total spin |s,m〉
given individual spins s1, s2, starting with smax = s1 + s2,m = smax and acting with
the lowering operator S− to obtain all states of lower m; then decreasing s in unit
intervals and repeating the exercise for each s, terminating at smin = |s1 − s2|. This
gives a system of linear equations that can then be completely solved for the CG
coefficients.

Of course, this procedure is clearly a mess for more general s1, s2 than we consid-
ered above. Thankfully, the world is a merciful place and someone has done this for
you already once and for all. The coefficients Cs1 s2 s

m1 m2 m
are known as Clebsch-Gordan

coefficients, and can be read off of tables. By convention the coefficients are taken
to be real (they could have unphysical phases that we set to zero WLOG), so they
allow you to read of |sm〉 in terms of |s1m1〉|s2m2〉 or visa versa.

We have focused on the case of two distinct particles, i.e. adding two spins, but
the direct product of spins is associative, so if you want to work out the case of three
or more spins you can just iterate the procedure for the product of two spins as long
as necessary.
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Figure 30.1: The Clebsch-Gordon coe�cients for s1 = s2 = 1
2 – on top,

the table copied from Table 4.8 (Gri�ths), and below, the explicit meaning
of each entry. Note that the values in the numerical table are really the
coe�cients Cs1 s2 s

m1 m2 m squared (with minus signs indicating subtraction).

3 of 4

Figure 2: A CG coefficient table for the s1, s2 = 1/2 case. The top are the coefficients
as they’d appear in a table; the bottom are the meanings. For the coefficients, square
roots are implicit (with minus signs taken outside).
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4 Other angular momenta

4.1 Addition of orbital angular momenta

We have worked through the case of adding spins, but adding orbital angular mo-
mentum works in the very same way; for two particles we define the total angular
momentum

L = L1 + L2

and compute total angular momentum ` and z-projection m in terms of the angular
momenta `1,m1 and `2,m2 of the particles. The two relevant representations are
L2
1, L1z, L

2
2, L2z and L2, Lz, L

2
1, L

2
2, and everything goes through as before.

4.2 Addition of spin and angular momentum

Finally, consider the total angular momentum of a single particle, i.e. the sum of
spin and orbital angular momentum:

J = L + S

Note that L,S commute because L is acting on the spatial part of the wavefunc-
tion and S is acting on the spin part, so

J2 = L2 + S2 + 2L · S (15)

Jz = Lz + Sz (16)

We label the eigenvalues of J2, Jz with j,m. Again, everything goes through as be-
fore: there are two possible representations, L2, Lz, S

2, Sz or J2, Jz, L
2, S2, etc.

As a final tip, whether you are interested in adding spins, angular momentum,
or both, you will invariably find the relationship

J1 · J2 =
1

2

(
J2 − J2

1 − J2
2

)
incredibly useful because states of the coupled representation are obviously eigen-
states of the RHS, so you can simply read off the eigenvalues of J1 · J2 acting on
these states. That is to say,

J1 · J2 |j,m, j1, j2〉 =
1

2

(
~2j(j + 1)− ~2j1(j1 + 1)− ~2j2(j2 + 1)

)
|j,m, j1, j2〉
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5 Entanglement

I want to close by returning to an interesting point that we mentioned last lecture:
although the two-particle states in the uncoupled representation all have the form
|1〉 ⊗ |2〉 (i.e. they factorize into a product of the states of particle one and particle
two), the states of definite total spin in the coupled representation cannot always be
written this way: they are linear combinations of products that don’t factorize. This
is the simplest example of entanglement, which is one of the truly original properties
of quantum mechanics.

That is to say, while the state

|1 1〉 = |1/2 1/2〉|1/2 1/2〉

is just the product of two single-particle states, the states

|10〉 =
1√
2

(|1/2 − 1/2〉|1/2 1/2〉+ |1/2 1/2〉|1/2 − 1/2〉) (17)

|00〉 =
1√
2

(|1/2 − 1/2〉|1/2 1/2〉 − |1/2 1/2〉|1/2 − 1/2〉) (18)

are not simply the product of two single-particle states. Such states are said to be
entangled. The second example (|00〉) is perhaps the most famous of all entanged
states, and is known as the EPR pair, for Einstein, Podolsky, and Rosen. You will
explore all of the remarkable properties of entangled particles in 115C, though I will
also post some bonus notes for your amusement.
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