We said that the rotation operator

$$
R(\vec{\theta})=\exp \left(-i \frac{\vec{\theta} \vec{L}}{\hbar}\right)
$$

ie angular momentum in the generator of rotations. Let's try to justify it a bit better.
Under rotetions $\vec{r} \rightarrow \vec{r}^{\prime}=R \vec{r}$

$$
|\psi\rangle \rightarrow\left|\psi^{\prime}\right\rangle
$$

In terms of wevefunctions $\psi^{\prime}\left(r^{-1}\right)=\psi(\vec{r})$ If you are not convinced of thus, think in terms of probability densities. You rotete the system, but the probability density at the new position must be the same as it was at the old position, thus

$$
\left|\psi\left(\vec{r}^{-1}\right)\right|^{2}=\left|\psi^{\prime}\left(\vec{r}^{\prime}\right)\right|^{2}
$$

Then $\psi^{\prime}\left(\vec{r}^{\prime}\right)=\psi\left(\vec{r}^{-1}\right)=\psi\left(R^{-1} \vec{r}^{\prime}\right)$ relabeling \vec{F}^{\prime} as $\vec{r}^{\prime} \quad \psi^{\prime}(\vec{r})=\psi\left(R^{-1} \vec{r}\right)$

This is the new wevefunction!
Now consider rotation around z by A

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=R(\theta)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

For small $\theta, R(\theta) \approx\left(\begin{array}{ccc}1 & -\theta & 0 \\ \theta & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

$$
R^{-1}(\theta)=\left(\begin{array}{ccc}
1 & \theta & 0 \\
-0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The new wevefunction in

$$
\psi\left(R^{-1} \vec{r}\right)=\psi\left(\begin{array}{lll}
x+y \theta & y-x \theta & z
\end{array}\right)
$$

Expound in Taylor Series

$$
\begin{gathered}
\psi\left(R^{-1} \vec{r}\right)=\psi(x, y, z)+y \theta \frac{\partial \psi}{\partial x}-x \theta \frac{\partial \psi}{\partial y} \\
\psi\left(R^{-1} \vec{r}^{-1}\right)=\psi\left(\vec{r}^{\prime}\right)-i \theta\left(i y \frac{\partial}{\partial x}-i x \frac{\partial}{\partial y}\right) \psi(\vec{r}) \\
=\frac{1}{\hbar} L_{z} \\
\psi\left(R^{-1} \vec{r}^{\prime}\right)=\psi^{\prime}(\vec{r})=\left(1-\frac{i \partial L_{z}}{\hbar}\right) \psi(\vec{r})
\end{gathered}
$$

For swell rotation by A around z-axis We had that for rotation by A around z exis $R(\theta)=\exp \left(-\frac{i \theta L_{z}}{\hbar}\right)$
and for small A

$$
R(\theta)=1-\frac{i \theta L_{z}}{\hbar}
$$

