
(Brief) Solutions to Practice Final Exam, Physics 115B

This exam is closed book, closed notes, closed calculators/phones. Please show your work
for full credit. You may make free use of anything on the “Useful Formulae” page. There
are seven problems.

You have 180 minutes. You can do this!

1



Useful formulae

Schrödinger Equation: i~ ∂
∂t |Ψ〉 = Ĥ|Ψ〉 w/ Hamiltonian Ĥ = p̂2

2m + V (any space)

Harmonic oscillator (1d): For Ĥ = p̂2

2m + 1
2mω

2x̂2, raising/lowering operators a± =

1√
2m~ω

(mωx̂∓ip̂), x̂ =
√

~
2mω (a++a−), p̂ = i

√
~mω
2 (a+−a−), [a−, a+] = 1, Ĥ = ~ω(a+a−+

1/2), En = ~ω(n+ 1/2), a+ψn =
√
n+ 1ψn+1, a−ψn =

√
nψn−1, ψ0(x) =

(
mω
π~
)1/4

e−
mω
2~ x

2
.

QM in 3D: Position operator ~x = (x, y, z) and momentum operator ~p = (px, py, pz) in
Cartesian coords. Position space px = −i~ ∂

∂x , py = −i~ ∂
∂y , pz = −i~ ∂

∂z , so ~p = −i~∇ and

H = − ~2
2m∇2 + V . Commutators [x, px] = [y, py] = [z, pz] = i~, all other commutators of

x, y, z, px, py, pz are zero.

Spherically symmetric potentials: V (~r) = V (r), eigenstates ψn,`,m = Rn,`(r)Y
m
` (θ, φ),

radial momentum pr = −i~
(
∂
∂r + 1

r

)
and p2r = −~2 1

r2
∂
∂r

(
r2 ∂

∂r

)
.

Hydrogen atom: V (r) = − e2

4πε0
1
r , energies En = − ~2

2ma20n
2 = −R/n2, Bohr radius

a0 ≡ 4πε0~2
me2

, ground state wavefunction ψ1,0,0(r, θ, φ) = 1√
πa30

e−r/a0 , “circular orbit” wave-

functions ψn,n−1,m = 1√
(2n)!

(
2
na0

)3/2 (
2r
na0

)n−1
e−r/na0 Y m

n−1(θ, φ).

Angular Momentum & Spin Operators: [Lx, Ly] = i~Lz, [Ly, Lz] = i~Lx, [Lz, Lx] =

i~Ly, analogous relations for Sx, Sy, Sz, and total angular momentum ~J = ~L+ ~S.
L2|`,m〉 = ~2`(` + 1)|`,m〉, Lz|`,m〉 = ~m|`,m〉, analogous expressions for S2, Sz acting
on |s,m〉 and J2, Jz acting on |j,m〉. Raising and lowering operators L± = Lx ± iLy for
eigenstates of L2, Lz, with L+ |`,m〉 = ~

√
`(`+ 1)−m(m+ 1) |`,m+ 1〉 and L− |`,m〉 =

~
√
`(`+ 1)−m(m− 1) |`,m− 1〉. In terms of these operators, Lx = 1

2(L+ + L−) and
Ly = 1

2i(L+ − L−); analogous expressions for S± and J±.

Pauli matrices: σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Representation of spin-1/2: Basis χ+ =

(
1
0

)
, χ− =

(
0
1

)
, operators ~S = (~/2)~σ

Coupling to electromagnetism: For a particle of charge q, H = 1
2m

(
~p− q ~A

)2
+ qϕ,

where ~p is the vector of momentum operators (i.e. ~p = (px, py, pz)), ~A is the vector
potential, ϕ is the scalar potential, in terms of which the electric and magnetic fields are
~E = −∇ϕ− ∂ ~A/∂t and ~B = ∇× ~A. Gauge transformations ϕ′ ≡ ϕ− ∂Λ/∂t, ~A′ ≡ ~A+∇Λ
leave the physics unchanged.
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Free electron gas: Box of volume V = LxLyLz. States labeled by wavenumbers ~k =
(nxπ/Lx, nyπ/Ly, nzπ/Lz), each occupies k-space volume π3/V . Electrons in ground state
fill out states to Fermi radius kF = (3ρπ2)1/3 in terms of free electron density ρ = Nd/V .

Energy of the Fermi surface EF =
~2k2F
2m , total energy Etot =

~2k5FV
10π2m

= ~2(3π2Nd)5/3

10π2m
V −2/3.

Work dW = PdV done by pressure implies degeneracy pressure P = 2
3
Etot
V .

Symmetries and Conservation Laws: Active transformation: act on states, |ψ〉 →
T |ψ〉, operators fixed. Passive transformation: act on operators, O → T †OT , states fixed.
Symmetry if [H,O] = 0, implies conservation laws d

dt〈O〉 = 0.

Transformations: Transformations unitary, T †T = 1. Translation operator T (a) |x〉 =
|x+ a〉 , T (a)ψ(x) = ψ(x − a), generated by momentum, T (a) = exp [−iap̂/~]. Parity
operator Π |x〉 = |−x〉 , Πψ(x) = ψ(−x). Rotation operator R(n̂, θ) by θ around axis n̂,

generated by angular momentum, R(n̂, θ) = exp
[
−iθn̂ · ~L/~

]
. Time translation operator

U(t), generated by Hamiltonian, U(t) = exp [−iHt/~].

Clebsch-Gordan Coefficients

44. Clebsch-Gordan coefficients 1

44. Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.

Y 0
1 =

√
3

4π
cos θ

Y 1
1 = −

√
3

8π
sin θ eiφ

Y 0
2 =

√
5

4π

(3

2
cos2 θ − 1

2

)

Y 1
2 = −

√
15

8π
sin θ cos θ eiφ

Y 2
2 =

1

4

√
15

2π
sin2 θ e2iφ

Y −m
ℓ = (−1)mY m∗

ℓ ⟨j1j2m1m2|j1j2JM⟩
= (−1)J−j1−j2⟨j2j1m2m1|j2j1JM⟩d ℓ

m,0 =

√
4π

2ℓ + 1
Y m

ℓ e−imφ

d
j
m′,m = (−1)m−m′

d
j
m,m′ = d

j
−m,−m′ d 1

0,0 = cos θ d
1/2
1/2,1/2

= cos
θ

2

d
1/2
1/2,−1/2

= − sin
θ

2

d 1
1,1 =

1 + cos θ

2

d 1
1,0 = − sin θ√

2

d 1
1,−1 =

1 − cos θ

2

d
3/2
3/2,3/2

=
1 + cos θ

2
cos

θ

2

d
3/2
3/2,1/2

= −
√

3
1 + cos θ

2
sin

θ

2

d
3/2
3/2,−1/2

=
√

3
1 − cos θ

2
cos

θ

2

d
3/2
3/2,−3/2

= −1 − cos θ

2
sin

θ

2

d
3/2
1/2,1/2

=
3 cos θ − 1

2
cos

θ

2

d
3/2
1/2,−1/2

= −3 cos θ + 1

2
sin

θ

2

d 2
2,2 =

(1 + cos θ

2

)2

d 2
2,1 = −1 + cos θ

2
sin θ

d 2
2,0 =

√
6

4
sin2 θ

d 2
2,−1 = −1 − cos θ

2
sin θ

d 2
2,−2 =

(1 − cos θ

2

)2

d 2
1,1 =

1 + cos θ

2
(2 cos θ − 1)

d 2
1,0 = −

√
3

2
sin θ cos θ

d 2
1,−1 =

1 − cos θ

2
(2 cos θ + 1) d 2

0,0 =
(3

2
cos2 θ − 1

2

)

Figure 44.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).
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1. Is each of the following statements true or false? If true, simply write “true”. If false,
you must briefly (at most one sentence) explain why the statement is false.

(a) The first excited state of the 3d harmonic oscillator is threefold degenerate.

(b) The observable corresponding to radial momentum is r̂ · ~p.
(c) The “circular” orbits of the Hydrogen atom are the ones with the smallest

possible angular momentum.

(d) The energy of electromagnetic radiation emitted when an electron in the excited
state of hydrogen with principle quantum number n transitions to the ground
state is E = −R

(
1
n2 − 1

)
.

(e) [Lx, Lz] = i~Ly
(f) The eigenstates of orbital angular momentum are the generalized Legendre poly-

nomials Pm` .

(g) The total angular momentum of a particle is given by the addition of its intrinsic
spin and orbital angular momentum.

(h) Electrons can have different values of total intrinsic spin.

(i) |1,−1〉 = |1/2,−1/2〉 |1/2, 1/2〉
(j) T (a)T (b) = T (a+ b) for the spatial translation operator T .

(k) x̂→ x̂ under parity transformations.

(l) The time translation operator is hermitian.

Solutions:

(a) T

(b) F, not hermitian.

(c) F, largest possible.

(d) T

(e) F, minus sign.

(f) F, spherical harmonics.

(g) T

(h) F, all electrons are s = 1/2.

(i) F, both spins down.

(j) T

(k) F, x̂→ −x̂.

(l) F, unitarity but not hermitian.
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2. Provide a short written answer (either an equation or 1-2 sentences) to each of the
following questions.

(a) Suppose you measure Sz for a spin-1/2 particle and find +~/2. You then measure
Sx, and then measure Sz once again. What values could you obtain for the
second measurement of Sz, and with what probabilities?

(b) Given three indistinguishable bosons, one in each in the single-particle states ψa,
ψb, and ψc, construct the appropriate normalized three-particle wavefunction.

(c) A particle of total spin s1 = 1/2 and a particle of total spin s2 = 1 are coupled
together via a Hamiltonian of the form H = ε~S1 · ~S2. What are the eigenvalues
of the Hamiltonian?

(d) Consider a hydrogen atom in the orbital state ψ2,1,1, with both proton and
electron spins oriented down in the ẑ direction. If you measured the total angular
momentum J2 of the hydrogen atom (including the spins of the electron and
the proton), what are the possible outcomes, and with what probabilities?

(e) Consider two particles in the spin state |1, 0〉 |1, 0〉. If we measured the magni-
tude of the total spin S2 for the two-particle system, what values could we get,
and with what probabilities?

Solutions:

(a) +~/2 with probability 1/2 and −~/2 with probability 1/2.

(b)

ψ(~r1, ~r2, ~r3) =
1√
6

[ψa(~r1)ψb(~r2)ψc(~r3) + ψa(~r1)ψc(~r2)ψb(~r3) + ψb(~r1)ψa(~r2)ψc(~r3) (1)

+ψb(~r1)ψc(~r2)ψa(~r3) + ψc(~r1)ψb(~r2)ψa(~r3) + ψc(~r1)ψa(~r2)ψb(~r3)] (2)

(c) We have H = ε
2(S2 − S2

1 − S2
2) so the eigenvalues are ~2ε

2 [s(s+ 1)− 11/4]. The
possible values of s are s = 1/2, 3/2 so the eigenvalues are −ε~2,+ε~2/2.

(d) The addition of electron and proton spins gives

|1/2,−1/2〉 |1/2,−1/2〉 = |1,−1〉

Adding this to the orbital angular momentum state |1, 1〉 gives

|1, 1〉 |1,−1〉 =
1√
6
|2, 0〉+

1√
2
|1, 0〉+

1√
3
|0, 0〉

so the possible outcomes are j = 2 with probabilitt 1/6, j = 1 with probability
1/2, and j = 0 with probability 1/3.
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(e) We have

|1, 0〉 |1, 0〉 =

√
2

3
|2, 0〉 −

√
1

3
|0, 0〉

so the outcomes are s = 2 with probability 2/3 and s = 0 with probability 1/3.
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3. This problem involves the decay of an unstable particle C to particles A and B,
in which total angular momentum is conserved. In the rest frame of C, the total
angular momentum ~J = ~SC is just the spin of the particle C. After the decay, the
total angular momentum consists of three terms,

~J = ~SA + ~SB + ~L

where ~SA is the spin of particle A, ~SB is the spin of particle B, and ~L is the orbital
angular momentum between A and B. Conservation of angular momentum in this
decay means that if the initial state is an eigenstate of J2 and Jz, then the final state
is also an eigenstate with the same eigenvalues.

(a) Consider the case where C is a spin-0 particle and A,B are both spin-1/2 par-
ticles (sA = sB = 1/2). What values of the orbital angular momentum ` are
consistent with angular momentum conservation?

(b) Repeat the above problem, but now where C is a spin-3/2 particle, A is a
spin-1/2 particle, and B is a spin-1 particle.

(c) There are certain processes for which a two-body decay is forbidden. Explain
why a neutron n cannot decay to a proton p and an electron e− (all spin-1/2
fermions), despite this being consistent with energy and charge conservation.

(d) A mystery particle C of unknown spin sC is polarized such that mC = +sC .
It decays into particles A & B, where sA = 1/2 and sB = 0, but the relative
orbital angular momentum ` is unknown (for simplicity, you may assume the
decay gives a single, but unknown, value of `). After the decay, the z component
mA of the spin of particle A is measured, and is found to have probabilities

P (mA = 1/2) = 1/5 P (mA = −1/2) = 4/5

What is sC , and what is `? Hint: you may wish to consider the action of J+ on
both initial and final states.

Parts (a), (b), and (c) are identical to Problem 4 of Homework 6. For part (d) we
have:
we can make our lives simpler at the start by noting that the combined spin states are
just |1/2, 1/2〉 and |1/2,−1/2〉; the spin of B is zero. Then remembering also that
mC = mA +mB +m`, we have

|sC , sC〉 = α |1/2, 1/2〉 |`, sC − 1/2〉+ β |1/2,−1/2〉 |`, sC + 1/2〉

Then acting on both sides with J+ = S+ + L+ gives

0 = ~β |1/2, 1/2〉 |`, sC + 1/2〉+~c1α |1/2, 1/2〉 |`, sC + 1/2〉+~c2β |1/2,−1/2〉 |`, sC + 3/2〉
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with c1 =
√
`(`+ 1)− (sC − 1/2)(sC + 1/2) and c2 =

√
`(`+ 1)− (sC + 1/2)(sC + 3/2).

This implies β = −c1α and c2β = 0. The only nontrivial solution to these is c2 = 0,
which implies

`(`+ 1) = (sC + 1/2)(sC + 3/2)

which is nominally satisfied for either ` = −sC − 3/2 or ` = sC + 1/2, but only the
latter is consistent with ` > 0 and sC > 0. This means our state is

|sC , sC〉 = α |1/2, 1/2〉 |sC + 1/2, sC − 1/2〉+ β |1/2,−1/2〉 |sC + 1/2, sC + 1/2〉

The only entries in the C-G table consistent with this decomposition and the stated
outcomes of measurements of Sz for particle A are those for which sC = 3/2, i.e.

|3/2, 3/2〉 =

√
4

5
|1/2,−1/2〉 |2, 2〉 −

√
1

5
|1/2, 1/2〉 |2, 1〉

so we conclude sC = 3/2 and ` = 2.
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4. Ignoring electron-electron repulsion, construct the ground state of Lithium (Z = 3).
Start with a spatial wave function, remembering that only two electrons can occupy
the hydrogenic ground state; the third goes to ψ2,0,0. What is the energy of this
state? Now tack on the spin, and antisymmetrize. What’s the degeneracy of the
ground state?

Solution: This is the same as Problem 3 of Homework 7.
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5. In this problem, you will calculate the effect of the exchange interaction in an infinite
square well. Consider two noninteracting particles of mass m. Recall the infinite
square well eigenstates are

ψj(x) =

√
2

a
sin

jπx

a

where j = 1, 2, 3, . . . and x ∈ [0, a]. Let the particles be in states ψj and ψk with
j 6= k. Then

〈
(∆x)2

〉
d

= 〈ψj |x2 |ψj〉+ 〈ψk|x2 |ψk〉 − 2 〈ψj |x |ψj〉 〈ψk|x |ψk〉
〈
(∆x)2

〉
± =

〈
(∆x)2

〉
d
∓ 2| 〈ψj |x |ψk〉 |2,

where the subscript d refers to the distinguishable particle state and ± refers to the
symmetric or antisymmetric state. Note the following useful integrals:

∫ a

0
dxx sin2(jπx/a) = a2/4

∫ a

0
dxx2 sin2(jπx/a) =

a3

12

(
2− 3

π2j2

)

∫ a

0
dxx sin(jπx/a) sin(kπx/a) =

2a2jk
[
(−1)j+k − 1

]

π2(j2 − k2)2

Calculate
〈
(∆x)2

〉
if the particles are

(a) distinguishable

(b) in a symmetric spatial wave function, with j + k even.

(c) in a symmetric spatial wave function, with j + k odd.

(d) in an antisymmetric spatial wave function, with j + k even.

(e) in an antisymmetric spatial wave function, with j + k odd.

Solution: This is the same as Problem 3 of Homework 8.
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6. Consider two particles of mass m1 and m2 (in one dimension) that interact via a
potential that depends only on the distance between the particles, V (|x1 − x2|), so
that the Hamiltonian is

H = − ~2

2m1

∂2

∂x21
− ~2

2m2

∂2

∂x22
+ V (|x1 − x2|).

Acting on a two-particle wave function, the translation operator would be

T̂ (a)ψ(x1, x2) = ψ(x1 − a, x2 − a)

(a) Show that the translation operator can be written

T̂ (a) = exp

[
− ia

~
P̂

]

where P̂ = p̂1 + p̂2 is the total momentum.

(b) Show that the total momentum is conserved for this system.

Solutions:

(a) Various possible ways to do this. One is to note that for a single particle

T (a)ψ(x) = ψ(x− a)

for which the translation operator can be written as

T (a) = exp [−iap/~]

As confirmation,

T (a)ψ(x) =

(
1− ia

~
p+

(−ia
~

)2

p2 + . . .

)
ψ(x)

=

(
1− a d

dx
+ a2

d2

dx2
+ . . .

)
ψ(x)

= ψ(x)− dψ

dx
a+

d2ψ

dx2
a2 + . . .

= ψ(x− a)

Now turning to two particles, since the operators p1, p2 commute, it follows that
the product of two distinct single-particle translations

T (a) = exp

[
− ia

~
p1

]
exp

[
− ia

~
p2

]
= exp

[
− ia

~
P

]

satisfies
T (a)ψ(x1, x2) = ψ(x1 − a, x2 − a)
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(b) One line of argumentation would be to re-write the Lagrangian in terms of rel-
ative and center-of-mass coordinates. Since the potential depends only on the
relative coordinate and is independent of the center-of-mass coordinate, it is in-
variant under center-of-mass translations and so total momentum is conserved.

Another option would be to show that [P, V ] = 0 directly, i.e.

i

~
[P, V (|x1 − x2|)] =

(
∂

∂x1
+

∂

∂x2

)
V (|x1 − x2|)− V (|x1 − x2|)

(
∂

∂x1
+

∂

∂x2

)

= V ′(|x1 − x2|)
(x1 − x2)
|x1 − x2|

− V ′(|x1 − x2|)
(x1 − x2)
|x1 − x2|

= 0

Thus [P,H] = [P, V ] = 0 and so total momentum is conserved.

7. At time t = 0, an electron in a hydrogen atom is in the state

ψ(~r, 0) = A
[
3iψ1,0,0(~r)− 4ψ2,1,1(~r)− iψ2,1,0(~r) +

√
10ψ2,1,−1(~r)

]

where ψn,`,m are the properly normalized energy eigenstates.

(a) Determine A.

(b) What is the wavefunction at time t, i.e. ψ(~r, t)?

(c) What is the expectation value 〈E〉 at t = 0? (In terms of E1.)

(d) What is the expectation value 〈L2〉 at t = 0?

(e) What is the expectation value 〈Lz〉 at t = 0?

(f) Which of 〈E〉, 〈Lz〉, 〈L2〉, and 〈~r〉 vary with time in this state?

(g) Suppose that a measurement of Lz at t = 0 yields ~. After this measurement,
what is the properly normalized wavefunction ψ(~r, t)?

Solutions:

(a) We have

|ψ|2 = |A|2 (9 + 16 + 1 + 10) = 36|A|2 → A =
1

6

(b) It’s

ψ(~r, t) =
1

6

[
3ie−iE1t/~ψ1,0,0(~r)− 4e−iE2t/~ψ2,1,1(~r)− ie−iE2t/~ψ2,1,0(~r) +

√
10e−iE2t/~ψ2,1,−1(~r)

]

where E1 is the ground state energy and E2 = E1/4.
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(c) We have

〈H〉 =
1

36
(9E1 + 16E2 + E2 + 10E2)

=
E1

36
(9 + 27/4) =

7E1

16

(d) We have

〈L2〉 =
~2

36
(9 · 0 + 16 · 2 + 1 · 2 + 10 · 2)

=
3~2

2

(e) We have

〈Lz〉 =
~
36

(9 · 0 + 16 · 1 + 1 · 0 + 10 · (−1))

=
~
6

(f) 〈E〉 is constant because energy is conserved. 〈Lz〉 and 〈L2〉 are constant because
angular momentum is conserved. 〈~r〉 varies in time because there are nonzero
matrix elements between different components of the state with different energies.

(g) The outcome at t = 0 tells us we have been projected into the components of the
state with m = 1. Thus we end up in ψ2,1,1 and the state as a function of time
is

ψ(~r, t) = e−iE2t/~ψ2,1,1(~r)
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CONGRATULATIONS! You’ve reached the end of the exam.
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