1. The initial state $|i\rangle=|p d\rangle$ has $I=I_{3}=\frac{1}{2}$. Then the final states are either
$|f\rangle=\left|\pi^{0} H e^{3}\right\rangle=|1,0\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle=\sqrt{\frac{2}{3}}\left|\frac{3}{2}, \frac{1}{2}\right\rangle-\sqrt{\frac{1}{3}}\left|\frac{1}{2}, \frac{1}{2}\right\rangle$
$|f\rangle=\left|\pi^{+} H^{3}\right\rangle=|1,1\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\sqrt{\frac{1}{3}}\left|\frac{3}{2}, \frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}\left|\frac{1}{2}, \frac{1}{2}\right\rangle$
Since $I=\frac{1}{2}$ for the initial state, only the $I=\frac{1}{2}$ pieces of the final states contribute to $A_{i \rightarrow f}$. Thus, for the amplitudes $A\left(p d \rightarrow \pi^{+} H^{3}\right)=\sqrt{2} A\left(p d \rightarrow \pi^{0} H^{3}\right)$ and for the cross-sections $\sigma\left(p d \rightarrow \pi^{+} H^{3}\right)=2 \sigma\left(p d \rightarrow \pi^{0} H^{3}\right)$
2. (a) The commutator is given by

$$
[H, T(a)]=\left[\frac{p^{2}}{2 m}+V(x), e^{-i a p / \hbar}\right]=\left[V(x), e^{-i a p / \hbar}\right]
$$

i.e., only the potential part of the Hamiltonian matters since $T(a)$ can be written with momentum the only operator appearing. One can evaluate this by writing a series expansion for the exponential, writing the momentum operator as a derivative with respect to x, and expanding as a sum of commutators and operators; however, this is much more algebra than we would like to do. Instead, we will use the definition of the translation operator as translating a function:

$$
\begin{aligned}
{[V(x), T(a)] \psi(x) } & =V(x)[T(a) \psi(x)]-T(a)[V(x) \psi(x)] \\
& =V(x) \psi(x-a)-V(x-a) \psi(x-a) \\
& =V(x) T(a) \psi(x)-V(x-a) T(a) \psi(x) \\
& =(V(x)-V(x-a)) T(a) \psi(x),
\end{aligned}
$$

so $[H, T(a)]=[V(x), T(a)]=(V(x)-V(x-a)) T(a)$.
(b) We know p is the generator of spatial translations. We thus have

$$
\frac{d\langle T(\varepsilon)\rangle}{d t}=\frac{d\langle I-i \varepsilon G / \hbar\rangle}{d t}=\frac{d\langle I\rangle}{d t}-\frac{i \varepsilon}{\hbar} \frac{d\langle p\rangle}{d t}=-\frac{i \varepsilon}{\hbar} \frac{d\langle p\rangle}{d t}
$$

and

$$
[H, T(e)]=\left[\frac{p^{2}}{2 m}+V(x), I-\frac{i \varepsilon p}{\hbar}\right]=-\frac{i \varepsilon}{\hbar}\left[\frac{p^{2}}{2 m}+V(x), p\right]=-\frac{i \varepsilon}{\hbar}[V(x), p]=\varepsilon V^{\prime}(x)
$$

Note that this is consistent of taking the infinitesimal limit of the expression in (a); the difference in the potential between two points goes to V^{\prime} time the distance between the points, while the translation operator goes to the identity (since we only need it to lowest order). Ehrenfest's theorem thus gives

$$
\frac{d\langle p\rangle}{d t}=-\left\langle V^{\prime}(x)\right\rangle
$$

(c) We can write the general solution to the differential equation above as

$$
\langle p\rangle_{f}=\langle p\rangle_{i}-\int_{t_{i}}^{t_{f}}\left\langle V^{\prime}(x)\right\rangle d t
$$

If the Hamiltonian is translationally-invariant, the potential does not vary in space, so $V^{\prime}(x)=0$ and $\langle p\rangle$ is constant.

