1. (a) The ground state is the state of lowest energy. The lowest energy two-particle wavefunction will have both particles in the lowest energy single particle state, so we have

$$
\psi_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\psi_{100}\left(\mathbf{r}_{1}\right) \psi_{100}\left(\mathbf{r}_{2}\right)
$$

(b) The spatial wavefunction above is symmetric. The spin state must therefore be antisymmetric, for which the only possibility is the singlet state $|0,0\rangle$.
(c) An electron falling from the first excited state $n=2$ to the ground state releases

$$
-4(13.6)\left(\frac{1}{4}-1\right)=40.8 \mathrm{eV}
$$

of energy. The second electron needs only $-4(13.6) / 4=13.6 \mathrm{eV}$ to be ionized, less than the energy released by the first electron. The second electron will escape with 27.2 eV .
(d) To have an antisymmetric total wavefunction, we will need either a symmetric or antisymmetric spatial wavefunction. The excited state spatial wavefunctions are thus given by

$$
\psi_{n l m}\left(\mathbf{r}_{1}\right) \psi_{100}\left(\mathbf{r}_{2}\right) \pm \psi_{100}\left(\mathbf{r}_{1}\right) \psi_{n l m}\left(\mathbf{r}_{2}\right)
$$

with $n>1,0 \leq l<n,-l \leq m \leq l$.
(e) The symmetric spatial wavefunctions (plus sign) must have an antisymmetric spin state, so only the singlet $|0,0\rangle$ is alowed. The antisymmetric spatial wavefunctions (minus sign) must have a symmetric spin state, so all of the three triplet states $|1,1\rangle,|1,0\rangle,|1,-1\rangle$ are allowed.
(f) The ground state has no degeneracy, since the only allowed spin state is the singlet. The first excited, spatially symmetric state has $n=2$, so $l=0,1$ are both allowed, as are all of the possible m values. The only allowed spin state is the singlet. There is thus $1+3=4$-fold degeneracy. For the first excited, spatially antisymmetric state, we have the same allowed l, m values, but now there are three possible spin states for each. There is thus $3(1+3)=12$-fold degeneracy.

