1. (a) The z-component of the total spin is given by adding the z-components of the constituents,

$$
m=m_{1}+m_{2}=1 / 2
$$

This is not a state of definite total spin; S^{2} does not commute with $S_{1 z}$ and $S_{2 z}$. To get a state of definite total spin, we would need a particular linear combination (which can be read off a Clebsch-Gordan table) of $m_{1}=1, m_{2}=-1 / 2$ and $m_{1}=0, m_{2}=1 / 2$.
(b) We need to add together three angular momenta: the graviton spin, the electron spin, and the orbital angular momentum. The graviton and photon spins together can have

$$
s=2+1 / 2=5 / 2 \quad \text { or } \quad s=2-1 / 2=3 / 2
$$

For $s=5 / 2$, the total angular momentum is $j=5 / 2+0=5 / 2$. For $s=3 / 2$, the total angular momentum is $j=3 / 2+0=3 / 2$. Sensibly, when there is no orbital angular momentum, the total angular momentum is just given by the total spin.
$j=5 / 2$ has $m= \pm 5 / 2, \pm 3 / 2, \pm 1 / 2$ as possibilities; $j=3 / 2$ has $m= \pm 3 / 2, \pm 1 / 2$ as possibilities. In total, the possible z-components or the total angular momentum are thus $m= \pm 5 / 2$ with multiplicity one and $m= \pm 3 / 2, \pm 1 / 2$ with multiplicity two each. Note that we have ten states, the same as the 5 (for the graviton) times 2 (for the electron) there are in the uncoupled basis. We could also have figured the possible z-components from the uncoupled basis and the m_{1} and m_{2} values.
(c) We now have a non-trivial addition of the third angular momentum. It is still the case that the total spin is $s=5 / 2$ or $s=3 / 2$. If it is $5 / 2$, then j is between

$$
j_{\max }=5 / 2+1=7 / 2 \quad \text { and } \quad j_{\min }=5 / 2-1=3 / 2
$$

If $s=3 / 2$, then j is between

$$
j_{\max }=3 / 2+1=5 / 2 \quad \text { and } \quad j_{\min }=3 / 2-1=1 / 2
$$

The complete list of possibilities for j is thus $1 / 2,3 / 2,5 / 2,7 / 2$, with two different ways to make each of $j=3 / 2,5 / 2$. The possible z components of angular momentum are thus $m= \pm 1 / 2$ with multiplicity 6 (each of our four possible j can have $m=1 / 2$, and two of them occur twice); $m= \pm 3 / 2$ with multiplicity 5 (each of the possible $j \geq 3 / 2$); $m= \pm 5 / 2$ with multiplicity 3 ; and $m= \pm 7 / 2$ with multiplicity 1 . We can check that the total number of states is $2 \times(6+5+3+1)=30$, the same as the $5 \times 2 \times 3$ in the uncoupled representation. We could again have figured the possible z-components from the uncoupled basis and the m_{1}, m_{2}, and m_{3} values.
2. (a) We have

$$
\mathbf{E}^{\prime}=-\boldsymbol{\nabla} \phi^{\prime}-\frac{\partial \mathbf{A}^{\prime}}{\partial t}=-\boldsymbol{\nabla} \phi+\boldsymbol{\nabla} \frac{\partial \Lambda}{\partial t}-\frac{\partial \mathbf{A}}{\partial t}-\frac{\partial \boldsymbol{\nabla} \Lambda}{\partial t}=-\boldsymbol{\nabla} \phi-\frac{\partial \mathbf{A}}{\partial t}=\mathbf{E}
$$

since the partial derivative with respect to time commutes with the partial derivatives with respect to space in the gradient. We also have

$$
\mathbf{B}^{\prime}=\nabla \times \mathbf{A}^{\prime}=\nabla \times \mathbf{A}+\nabla \times \nabla \Lambda=\nabla \times \mathbf{A}
$$

since the curl of a gradient vanishes.
(b) As long as the electric and magnetic fields are the same, all physical effects will be the same. We thus cannot determine what Λ is; the potentials ϕ, \mathbf{A} are only defined up to the gauge transformation, and different choices of Λ are physically irrelevant and will give the same answer.
3. Classically the relative orbital angular momentum is zero because the outgoing particles are traveling back-to-back. The total angular momentum is going to be the sum of the spins of the outgoing particles and the relative orbital angular mometum, ie, $J=S_{1} \otimes S_{2} \otimes L=0 \otimes 1 / 2 \otimes L=1 / 2 \otimes L=(L+1 / 2) \oplus(L-1 / 2)$ (if $L=0$ the second term here does not exist). Conservation of angular momentum implies that J equal the spin of the decaying particle, i.e., $J=3 / 2$. Thus $L=1$ or $L=2$ are possible and $L=0$ is not allowed by conservation of angular momentum.

