1. (a) There was no question here, just preamble.
(b) On the left-hand side, we have

$$
S_{-}|11\rangle=\hbar \sqrt{1(1+1)-1(1-1)}|11-1\rangle=\sqrt{2} \hbar|10\rangle .
$$

On the right-hand side, we have

$$
\begin{aligned}
\left(S_{1-}+S_{2-}\right)|1 / 21 / 2\rangle|1 / 21 / 2\rangle & =S_{1-}|1 / 21 / 2\rangle|1 / 21 / 2\rangle+S_{2-}|1 / 21 / 2\rangle|1 / 21 / 2\rangle \\
& =\hbar \sqrt{\frac{1}{2} \frac{3}{2}-\frac{1}{2}\left(-\frac{1}{2}\right)}|1 / 2-1 / 2\rangle|1 / 21 / 2\rangle+\hbar \sqrt{\frac{1}{2} \frac{3}{2}-\frac{1}{2}\left(-\frac{1}{2}\right)}|1 / 21 / 2\rangle|1 / 2-1 / 2\rangle \\
& =\hbar(|1 / 2-1 / 2\rangle|1 / 21 / 2\rangle+|1 / 21 / 2\rangle|1 / 2-1 / 2\rangle) .
\end{aligned}
$$

Dividing both sides by $\sqrt{2} \hbar$ gives

$$
|10\rangle=\frac{1}{\sqrt{2}}|1 / 2-1 / 2\rangle|1 / 21 / 2\rangle+\frac{1}{\sqrt{2}}|1 / 21 / 2\rangle|1 / 2-1 / 2\rangle .
$$

For the first uncoupled state on the right, we have $m_{1}+m_{2}=-1 / 2+1 / 2=0=m$; for the second, we have $m_{1}+m_{2}=1 / 2-1 / 2=0=m$. All is as it should be.
(c) On the left-hand side, we have

$$
S_{-}|10\rangle=\hbar \sqrt{1(1+1)-0(0-1)}|10-1\rangle=\sqrt{2} \hbar|1-1\rangle
$$

On the right-hand side, we have a sum applied to a sum, so we get four terms. However, we can't lower a state that has $m_{1 / 2}=-1 / 2$. We thus have

$$
\begin{aligned}
\left(S_{1-}+S_{2-}\right) \frac{1}{\sqrt{2}}(|1 / 2-1 / 2\rangle|1 / 21 / 2\rangle+|1 / 21 / 2\rangle|1 / 2-1 / 2\rangle) & =\frac{1}{\sqrt{2}}\left(S_{2-}|1 / 2-1 / 2\rangle|1 / 21 / 2\rangle+S_{1-}|1 / 21 / 2\rangle|1 / 2-1 / 2\rangle\right) \\
& =\frac{1}{\sqrt{2}} \hbar(|1 / 2-1 / 2\rangle|1 / 2-1 / 2\rangle+|1 / 2-1 / 2\rangle|1 / 2-1 / 2\rangle) \\
& =\sqrt{2} \hbar|1 / 2-1 / 2\rangle|1 / 2-1 / 2\rangle
\end{aligned}
$$

Dividing both sides by $\sqrt{2} \hbar$ gives

$$
|1-1\rangle=|1 / 2-1 / 2\rangle|1 / 2-1 / 2\rangle .
$$

We indeed have $m=m_{1}+m_{2}$. Notice as well that this is the mirror of $|11\rangle$, with all z-components flipped.
(d) Since we have $m_{1 / 2}= \pm 1 / 2$, we can have $m=1,0,-1$. There is only one uncoupled state for each of $m= \pm 1$, and we already have coupled states equal to these; we can't write another and have it be orthogonal. For $m=0$, there are two uncoupled states, and we have only one coupled state. We thus expect our fourth coupled state to be a linear combination of $|1 / 2-1 / 2\rangle|1 / 21 / 2\rangle$ and $|1 / 21 / 2\rangle|1 / 2-1 / 2\rangle$.
(e) As suggested, our fourth state should have $s<1$, so it could be $1 / 2$ or 0 . To have $m=0$, the only one which works is $s=0$.
(f) Our existing state with $m=0$ has the two coefficients of its linear combination positive and of equal magnitude. We can write an orthogonal state by making the coefficients have opposite sign; our fourth coupled state is then

$$
|00\rangle=\frac{1}{\sqrt{2}}(|1 / 21 / 2\rangle|1 / 2-1 / 2\rangle-|1 / 2-1 / 2\rangle|1 / 21 / 2\rangle)
$$

If you like, you can check that this linear combination really does have $s=0$ by applying S^{2} and seeing that you get 0 .
2. (a) In the $1 \times 1 / 2$ table, we can find the column headed by $3 / 21 / 2$. There are two entries, the first for $1-1 / 2$ (meaning $\left.\left.|11\rangle\right|^{1 / 2}-1 / 2\right\rangle$) and the second for $01 / 2$ (meaning $\left.\left.|10\rangle\right|^{1 / 2} 2^{1 / 2}\right\rangle$). We have

$$
\left.\left.|3 / 21 / 2\rangle=\left.\sqrt{\frac{1}{3}}|11\rangle\right|^{1 / 2}-1 / 2\right\rangle+\left.\sqrt{\frac{2}{3}}|10\rangle\right|^{1 / 2} 1 / 2\right\rangle
$$

In the $1 \times 1 / 2$ table, we can find the row headed by $01 / 2$. There are two entries, the first for $|3 / 21 / 2\rangle$ and the second for $\left|1 / 2^{1} / 2\right\rangle$. We have

$$
\left.\left.|10\rangle\right|^{1 / 2} 2^{1 / 2}\right\rangle=\sqrt{\frac{2}{3}}\left|3 / 2^{1 / 2}\right\rangle-\left.\sqrt{\frac{1}{3}}\right|^{1 / 2} 2^{1 / 2\rangle}
$$

(b) In the 1×1 table, we can find the column headed by 20 . There are three entries, giving

$$
|20\rangle=\sqrt{\frac{1}{6}}|11\rangle|1-1\rangle+\sqrt{\frac{2}{3}}|10\rangle|10\rangle+\sqrt{\frac{1}{6}}|1-1\rangle|11\rangle
$$

In the 1×1 table, we can find the row headed by $1-1$. There are three entries, giving

$$
|11\rangle|1-1\rangle=\sqrt{\frac{1}{6}}|20\rangle+\sqrt{\frac{1}{2}}|10\rangle+\sqrt{\frac{1}{3}}|00\rangle .
$$

