1. (a) The spin operators are given by

$$S_i = \frac{\hbar}{2}\sigma_i$$

You can check this quickly by looking at the z-component, since it's diagonal; with the factor of $\hbar/2$, the two eigenvalues are $\pm \hbar/2$, exactly as they should be for spin-1/2.

(b) The raising and lowering operators are given by $S_{\pm} = S_x \pm iS_y$. We thus have

$$S_{+} = \frac{\hbar}{2} \left(\sigma_x + i\sigma_y \right) = \hbar \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}, \quad S_{-} = \frac{\hbar}{2} \left(\sigma_x - i\sigma_y \right) = \hbar \begin{pmatrix} 0 & 0\\ 1 & 0 \end{pmatrix}$$

Neither of these are Hermitian; they do not correspond to observables.

(c) We have

$$S^{2} = S_{x}^{2} + S_{y}^{2} + S_{z}^{2} = \frac{\hbar^{2}}{4} \left(\sigma_{x}^{2} + \sigma_{y}^{2} + \sigma_{z}^{2} \right) = \frac{3\hbar^{2}}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

2. (a) A normalized state satisfies

$$1 = \langle \chi | \chi \rangle = A \begin{pmatrix} -i & -2 \end{pmatrix} A \begin{pmatrix} i \\ -2 \end{pmatrix} = A^2 \begin{pmatrix} -i^2 + (-2)^2 \end{pmatrix} = 5A^2 \implies A = 1/\sqrt{5}$$

(b) The expectation values we need are

$$\langle S_x \rangle = \langle \chi | S_x | \chi \rangle = \left(-i/\sqrt{5} - 2/\sqrt{5} \right) \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} i/\sqrt{5} \\ -2/\sqrt{5} \end{pmatrix} = \frac{\hbar}{2} (2i/5 - 2i/5) = 0$$

$$\langle S_x^2 \rangle = \langle \chi | S_x S_x | \chi \rangle = \left(-i/\sqrt{5} - 2/\sqrt{5} \right) \frac{\hbar^2}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} i/\sqrt{5} \\ -2/\sqrt{5} \end{pmatrix} = \frac{\hbar^2}{4}$$

$$\langle S_y \rangle = \langle \chi | S_y | \chi \rangle = \left(-i/\sqrt{5} - 2/\sqrt{5} \right) \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} i/\sqrt{5} \\ -2/\sqrt{5} \end{pmatrix} = \frac{\hbar}{2} (2/5 + 2/5) = \frac{2\hbar}{5}$$

$$\langle S_y^2 \rangle = \langle \chi | S_y S_y | \chi \rangle = \left(-i/\sqrt{5} - 2/\sqrt{5} \right) \frac{\hbar^2}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} i/\sqrt{5} \\ -2/\sqrt{5} \end{pmatrix} = \frac{\hbar^2}{4}$$

$$\langle [S_x, S_y] \rangle = \langle i\hbar S_z \rangle = \left(-i/\sqrt{5} - 2/\sqrt{5} \right) \frac{i\hbar^2}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} i/\sqrt{5} \\ -2/\sqrt{5} \end{pmatrix} = \frac{i\hbar^2}{2} (1/5 - 4/5) = -\frac{3i\hbar^2}{10}$$

We thus have

$$\Delta S_x = \sqrt{\langle S_x^2 \rangle - \langle S_x \rangle^2} = \sqrt{\hbar^2/4 - 0} = \hbar/2$$

$$\Delta S_y = \sqrt{\langle S_y^2 \rangle - \langle S_y \rangle^2} = \sqrt{\hbar^2/4 - 4\hbar^2/25} = 3\hbar/10$$

and

$$\Delta S_x \Delta S_y = \frac{3\hbar^2}{20} = \frac{3\hbar^2}{20} = \frac{1}{2} |\langle [S_x, S_y] \rangle$$

so this satisfies the uncertainty principle and is a minimum uncertainty state.

- (c) The possible outcomes are the eigenvalues of $S_z, \pm \hbar/2$. The probability of each is given by the magnitudesquared of the coefficient of that eigenstate. We could thus get $\hbar/2$ with probability 1/5 or $-\hbar/2$ with probability 4/5.
- (d) After a measurement of S_z as $\hbar/2$, the system has collapsed to the state χ_+ , the eigenstate of S_z with eigenvalue $\hbar/2$.
- (e) Before the measurement, the system was in the state χ given above (not χ_+).

- 3. (a) The coefficient of χ_+ should be positive. $\cos \alpha$ takes on all values between 0 and 1 as α goes from 0 to $\pi/2$, so the range of α is $[0, \pi/2]$. $e^{i\delta}$ is periodic with period 2π , so the range of δ is $[0, 2\pi)$.
 - (b) We can determine the value of α from the first component; it is $\alpha = \pi/4$ for the x and y eigenstates; $\alpha = 0$ for $\chi_{z,+}$; and $\alpha = \pi/2$ for $\chi_{z,-}$. The value of δ is determined by the phase of the second component; it is $\delta = 0$ for $\chi_{x,+}$; $\delta = \pi$ for $\chi_{x,-}$; $\delta = \pi/2$ for $\chi_{y,+}$; $\delta = 3\pi/2$ for $\chi_{y,-}$; and indeterminate for the two z eigenstates.
 - (c) From above, we have $\alpha = 0, \pi/2$ for the two z eigenstates. We want these to correspond to the north and south poles of the sphere, which are the points $\theta = 0$ and $\theta = \pi$. We thus want to identify $\alpha = \theta/2$. $\phi = 0$ is along the positive x axis, and ϕ increases counterclockwise, so $\phi = \pi/2$ is along the y axis. We see this matches exactly with the δ values computed above, so we identify $\delta = \phi$.