1. (a) The spin operators are given by

$$
S_{i}=\frac{\hbar}{2} \sigma_{i}
$$

You can check this quickly by looking at the z-component, since it's diagonal; with the factor of $\hbar / 2$, the two eigenvalues are $\pm \hbar / 2$, exactly as they should be for spin- $1 / 2$.
(b) The raising and lowering operators are given by $S_{ \pm}=S_{x} \pm i S_{y}$. We thus have

$$
S_{+}=\frac{\hbar}{2}\left(\sigma_{x}+i \sigma_{y}\right)=\hbar\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad S_{-}=\frac{\hbar}{2}\left(\sigma_{x}-i \sigma_{y}\right)=\hbar\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Neither of these are Hermitian; they do not correspond to observables.
(c) We have

$$
S^{2}=S_{x}^{2}+S_{y}^{2}+S_{z}^{2}=\frac{\hbar^{2}}{4}\left(\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{z}^{2}\right)=\frac{3 \hbar^{2}}{4}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

2. (a) A normalized state satisfies

$$
1=\langle\chi \mid \chi\rangle=A\left(\begin{array}{ll}
-i & -2
\end{array}\right) A\binom{i}{-2}=A^{2}\left(-i^{2}+(-2)^{2}\right)=5 A^{2} \Longrightarrow A=1 / \sqrt{5}
$$

(b) The expectation values we need are

$$
\begin{aligned}
\left\langle S_{x}\right\rangle & =\langle\chi| S_{x}|\chi\rangle=\left(\begin{array}{ll}
-i / \sqrt{5} & -2 / \sqrt{5}
\end{array}\right) \frac{\hbar}{2}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\binom{i / \sqrt{5}}{-2 / \sqrt{5}}=\frac{\hbar}{2}(2 i / 5-2 i / 5)=0 \\
\left\langle S_{x}^{2}\right\rangle & =\langle\chi| S_{x} S_{x}|\chi\rangle=\left(\begin{array}{ll}
-i / \sqrt{5} & -2 / \sqrt{5}
\end{array}\right) \frac{\hbar^{2}}{4}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\binom{i / \sqrt{5}}{-2 / \sqrt{5}}=\frac{\hbar^{2}}{4} \\
\left\langle S_{y}\right\rangle & =\langle\chi| S_{y}|\chi\rangle=\left(\begin{array}{ll}
-i / \sqrt{5} & -2 / \sqrt{5}
\end{array}\right) \frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{i / \sqrt{5}}{-2 / \sqrt{5}}=\frac{\hbar}{2}(2 / 5+2 / 5)=\frac{2 \hbar}{5} \\
\left\langle S_{y}^{2}\right\rangle & =\langle\chi| S_{y} S_{y}|\chi\rangle=\left(\begin{array}{ll}
-i / \sqrt{5} & -2 / \sqrt{5}
\end{array}\right) \frac{\hbar^{2}}{4}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\binom{i / \sqrt{5}}{-2 / \sqrt{5}}=\frac{\hbar^{2}}{4} \\
\left\langle\left[S_{x}, S_{y}\right]\right\rangle & =\left\langle i \hbar S_{z}\right\rangle=\left(\begin{array}{ll}
-i / \sqrt{5} & -2 / \sqrt{5}
\end{array}\right) \frac{i \hbar^{2}}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{i / \sqrt{5}}{-2 / \sqrt{5}}=\frac{i \hbar^{2}}{2}(1 / 5-4 / 5)=-\frac{3 i \hbar^{2}}{10}
\end{aligned}
$$

We thus have

$$
\begin{aligned}
& \Delta S_{x}=\sqrt{\left\langle S_{x}^{2}\right\rangle-\left\langle S_{x}\right\rangle^{2}}=\sqrt{\hbar^{2} / 4-0}=\hbar / 2 \\
& \Delta S_{y}=\sqrt{\left\langle S_{y}^{2}\right\rangle-\left\langle S_{y}\right\rangle^{2}}=\sqrt{\hbar^{2} / 4-4 \hbar^{2} / 25}=3 \hbar / 10
\end{aligned}
$$

and

$$
\Delta S_{x} \Delta S_{y}=\frac{3 \hbar^{2}}{20}=\frac{3 \hbar^{2}}{20}=\frac{1}{2}\left|\left\langle\left[S_{x}, S_{y}\right]\right\rangle\right|
$$

so this satisfies the uncertainty principle and is a minimum uncertainty state.
(c) The possible outcomes are the eigenvalues of $S_{z}, \pm \hbar / 2$. The probability of each is given by the magnitudesquared of the coefficient of that eigenstate. We could thus get $\hbar / 2$ with probability $1 / 5$ or $-\hbar / 2$ with probability $4 / 5$.
(d) After a measurement of S_{z} as $\hbar / 2$, the system has collapsed to the state χ_{+}, the eigenstate of S_{z} with eigenvalue $\hbar / 2$.
(e) Before the measurement, the system was in the state χ given above (not χ_{+}).
3. (a) The coefficient of χ_{+}should be positive. $\cos \alpha$ takes on all values between 0 and 1 as α goes from 0 to $\pi / 2$, so the range of α is [$0, \pi / 2]$. $e^{i \delta}$ is periodic with period 2π, so the range of δ is $[0,2 \pi)$.
(b) We can determine the value of α from the first component; it is $\alpha=\pi / 4$ for the x and y eigenstates; $\alpha=0$ for $\chi_{z,+}$; and $\alpha=\pi / 2$ for $\chi_{z,-}$. The value of δ is determined by the phase of the second component; it is $\delta=0$ for $\chi_{x,+} ; \delta=\pi$ for $\chi_{x,-} ; \delta=\pi / 2$ for $\chi_{y,+} ; \delta=3 \pi / 2$ for $\chi_{y,-}$; and indeterminate for the two z eigenstates.
(c) From above, we have $\alpha=0, \pi / 2$ for the two z eigenstates. We want these to correspond to the north and south poles of the sphere, which are the points $\theta=0$ and $\theta=\pi$. We thus want to identify $\alpha=\theta / 2 . \phi=0$ is along the positive x axis, and ϕ increases counterclockwise, so $\phi=\pi / 2$ is along the y axis. We see this matches exactly with the δ values computed above, so we identify $\delta=\phi$.

