Physics 115B, Mastery Questions for Section 3 Spring 22

Today we're going to briefly examine energy level transitions in hydrogen and then begin working with angular momentum.

- 1. Classically, both linear momentum and angular momentum are vectors. We generally label a momentum eigenstate by the momentum vector, $|\vec{p}\rangle$. Can we do this with angular momentum (i.e. write a state $|\vec{L}\rangle$), and if so, why don't we?
- 2. Consider a state $|l, m\rangle$ that is a simultaneous eigenstate of \hat{L}^2 and \hat{L}_z . Using raising and lowering operators, find $\langle L_x \rangle$ and $\langle L_y \rangle$. Recall that $\hat{L}_+ = \hat{L}_x + i\hat{L}_y$. How could you have found the answer without doing any calculation?
- 3. Consider a state $|l,m\rangle$ which is a simultaneous eigenfunction of \hat{L}^2 and \hat{L}_z . Recall

$$\begin{split} \hat{L}^2 \left| l,m \right\rangle &= \hbar^2 l(l+1) \left| l,m \right\rangle \\ \hat{L}_z \left| l,m \right\rangle &= \hbar m \left| l,m \right\rangle. \end{split}$$

Additionally, as you will show on the problem set,

$$\hat{L}_{+} | l, m \rangle = \hbar \sqrt{l(l+1) - m(m+1)} | l, m+1 \rangle$$
$$\hat{L}_{-} | l, m \rangle = \hbar \sqrt{l(l+1) - m(m-1)} | l, m-1 \rangle$$

For operators A and B, the standard deviation and generalized uncertainty principle are given by

$$\Delta A = \sqrt{\langle A^2 \rangle - \langle A \rangle^2}$$
$$\Delta A \Delta B \ge \frac{1}{2} \left| \left\langle [A, B] \right\rangle \right|.$$

- (a) Find $\langle L^2 \rangle$ and $\langle L_z^2 \rangle$ for the cases $|l, 0\rangle$ and $|l, l\rangle$.
- (b) Find $\langle L_x^2 \rangle$ and $\langle L_y^2 \rangle$ for the same two cases.
- (c) Find ΔL_x and ΔL_y for both cases and discuss their significance.
- (d) Compare $\Delta L_x \Delta L_y$ with the uncertainty principle for these two cases.