1. In Cartesian coordinates, the position vector is given by

$$
\vec{r}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}
$$

We start with this form because $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$ are constant, so their derivatives are zero. If we started with the spherical form $r \hat{\mathbf{r}}$, then we take a derivative we would need to know quantities such as $\partial \hat{\mathbf{r}} / \partial \theta$. Since we want to use this method to find quantities like $\hat{\mathbf{r}}$, we won't get very far if we need to know its derivative to proceed.

We can then rewrite the coefficients in terms of spherical coordinates,

$$
\vec{r}=r \sin \theta \cos \phi \hat{\mathbf{x}}+r \sin \theta \sin \phi \hat{\mathbf{y}}+r \cos \theta \hat{\mathbf{z}}
$$

as this is the form most suitable to taking derivatives in spherical coordinates. We then have

$$
\frac{\partial \vec{r}}{\partial \theta}=r \cos \theta \cos \phi \hat{\mathbf{x}}+r \cos \theta \sin \phi \hat{\mathbf{y}}-r \sin \theta \hat{\mathbf{z}}
$$

where we have used that the partial derivative holds r, ϕ constant and that $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$ are all constants. The norm of this vector is

$$
\sqrt{\frac{\partial \vec{r}}{\partial \theta} \cdot \frac{\partial \vec{r}}{\partial \theta}}=\sqrt{r^{2} \cos ^{2} \theta \cos ^{2} \phi+r^{2} \cos ^{2} \theta \sin ^{2} \phi+r^{2} \sin ^{2} \theta}=r
$$

The normalized unit vector is thus given by

$$
\hat{\theta}=\cos \theta \cos \phi \hat{\mathbf{x}}+\cos \theta \sin \phi \hat{\mathbf{y}}-\sin \theta \hat{\mathbf{z}} .
$$

2. (a) We know (from lecture) that n can be any positive integer. It is by construction one larger than the maximum value of ℓ, so ℓ can be at most $n-1 . \ell$ is in general required to be a non-negative integer. m (as it does in general) takes on integer values from $-\ell$ to ℓ, inclusive.
(b) To share the same energy, the orbitals must share the same n. We are requiring that they also share the same ℓ; this leaves m to range freely. As stated above, m can take integer values from $-\ell$ to ℓ; there are $2 \ell+1$ of these integers and so $2 \ell+1$ orbitals which share the same energy and all have the same angular momentum ℓ. From the allowed values of ℓ above, we know that for the energy level indexed by n, ℓ can vary from 0 to $n-1$. We thus have the degeneracy of this level as

$$
\sum_{\ell=0}^{n-1} 2 \ell+1=2 \frac{n(n-1)}{2}+n=n^{2}
$$

Note that this is the degeneracy considering only n, ℓ, m; it will turn out that there is one more quantum number with two possible values and the n^{2} given above will become $2 n^{2}$.
3. (a) We know that the spherical harmonic Y_{1}^{0} is proportional to $\cos \theta$ with no ϕ dependence. We can thus write $z=b Y_{1}^{0}$, where b is an r-dependent constant but independent of θ, ϕ.
(b) The (squares of the) spherical harmonics all have no particular direction; along any given axis, they give equal weight to the positive and negative directions. You can see this, if skeptical, from both $\cos ^{2} \theta$ and $\sin ^{2} \theta$ being symmetric about $\pi / 2$, while the θ integral runs from 0 to π. Since they have no particular direction, $\langle z\rangle$ can be neither positive nor negative and must be zero.

If you would prefer a calculation to a symmetry argument, the appropriate tool to use is the orthonormality of the spherical harmonics. We saw above that z is proportional to Y_{1}^{0}. Multiplying any spherical harmonic Y_{ℓ}^{m} by Y_{1}^{0} will take you to a different spherical harmonic, and since it is different it must be orthogonal to the original spherical harmonic.
(c) Since we have a linear combination, the expectation value will now involve cross terms with one factor of Y_{0}^{0} and one of Y_{1}^{0}. Since these are different, the symmetry argument above fails. Y_{0}^{0} is a positive constant everywhere, while Y_{1}^{0} is positive for small θ (positive z) and negative for large θ (negative z). $\langle z\rangle$ will thus be non-zero (and positive).

Alternatively, following the calculation above, we can observe that since $Y_{0}^{0} \cos \theta \propto Y_{1}^{0}$, orthonormality of the spherical harmonics means that we will get a non-zero result for $\langle z\rangle$ for the cross term $Y_{0}^{0} Y_{1}^{0}$. The different spherical harmonic referenced in the previous part, when multiplying Y_{0}^{0} by Y_{1}^{0}, is Y_{1}^{0}; since this does in fact appear in our state, we get a non-zero result.

Note that the non-zero $\langle z\rangle$ depends on the linear combination; it does not happen for all of them. $(1 / \sqrt{2})\left(\psi_{210}+\psi_{211}\right)$, for example, does have $\langle z\rangle=0$.
(d) In the previous part, we took an equal weight superposition of ψ_{100} (which has no θ, ϕ dependence) and ψ_{210}, whose θ, ϕ dependence is the same as z. Our desired state should thus replace ψ_{210} with a state whose θ, ϕ dependence matches x rather than z. We know that $x \propto \sin \theta \cos \phi$; looking at the spherical harmonics, we see that both Y_{1}^{1} and Y_{1}^{-1} have the correct θ dependence. To get the ϕ dependence right, we use $\cos \phi=\left(e^{i \phi}+e^{-i \phi}\right) / 2$. This tells us we need $\left(Y_{1}^{1}-Y_{1}^{-1}\right) / \sqrt{2}$. The desired state is thus

$$
\frac{1}{\sqrt{2}}\left(\psi_{100}+\frac{1}{\sqrt{2}}\left(\psi_{211}-\psi_{21-1}\right)\right)
$$

