
Mastery Questions 2 Solutions Ian Banta

1. In Cartesian coordinates, the position vector is given by

~r = xx̂ + yŷ + zẑ.

We start with this form because x̂, ŷ, ẑ are constant, so their derivatives are zero. If we started with the
spherical form rr̂, then we take a derivative we would need to know quantities such as ∂r̂/∂θ . Since we want
to use this method to find quantities like r̂, we won’t get very far if we need to know its derivative to proceed.

We can then rewrite the coefficients in terms of spherical coordinates,

~r = r sin θ cosφx̂ + r sin θ sinφŷ + r cos θẑ,

as this is the form most suitable to taking derivatives in spherical coordinates. We then have

∂~r

∂θ
= r cos θ cosφx̂ + r cos θ sinφŷ − r sin θẑ,

where we have used that the partial derivative holds r, φ constant and that x̂, ŷ, ẑ are all constants. The norm
of this vector is √

∂~r

∂θ
· ∂~r
∂θ

=

√
r2 cos2 θ cos2 φ+ r2 cos2 θ sin2 φ+ r2 sin2 θ = r.

The normalized unit vector is thus given by

θ̂ = cos θ cosφx̂ + cos θ sinφŷ − sin θẑ.

2. (a) We know (from lecture) that n can be any positive integer. It is by construction one larger than the
maximum value of `, so ` can be at most n− 1. ` is in general required to be a non-negative integer. m
(as it does in general) takes on integer values from −` to `, inclusive.

(b) To share the same energy, the orbitals must share the same n. We are requiring that they also share the
same `; this leaves m to range freely. As stated above, m can take integer values from −` to `; there are
2`+ 1 of these integers and so 2`+ 1 orbitals which share the same energy and all have the same angular
momentum `. From the allowed values of ` above, we know that for the energy level indexed by n, ` can
vary from 0 to n− 1. We thus have the degeneracy of this level as

n−1∑
`=0

2`+ 1 = 2
n(n− 1)

2
+ n = n2

Note that this is the degeneracy considering only n, `,m; it will turn out that there is one more quantum
number with two possible values and the n2 given above will become 2n2.

3. (a) We know that the spherical harmonic Y 0
1 is proportional to cos θ with no φ dependence. We can thus

write z = bY 0
1 , where b is an r-dependent constant but independent of θ, φ.

(b) The (squares of the) spherical harmonics all have no particular direction; along any given axis, they give
equal weight to the positive and negative directions. You can see this, if skeptical, from both cos2 θ and
sin2 θ being symmetric about π/2, while the θ integral runs from 0 to π. Since they have no particular
direction, 〈z〉 can be neither positive nor negative and must be zero.

If you would prefer a calculation to a symmetry argument, the appropriate tool to use is the orthonor-
mality of the spherical harmonics. We saw above that z is proportional to Y 0

1 . Multiplying any spherical
harmonic Y m` by Y 0

1 will take you to a different spherical harmonic, and since it is different it must be
orthogonal to the original spherical harmonic.
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(c) Since we have a linear combination, the expectation value will now involve cross terms with one factor of
Y 0
0 and one of Y 0

1 . Since these are different, the symmetry argument above fails. Y 0
0 is a positive constant

everywhere, while Y 0
1 is positive for small θ (positive z) and negative for large θ (negative z). 〈z〉 will thus

be non-zero (and positive).

Alternatively, following the calculation above, we can observe that since Y 0
0 cos θ ∝ Y 0

1 , orthonormal-
ity of the spherical harmonics means that we will get a non-zero result for 〈z〉 for the cross term Y 0

0 Y
0
1 .

The different spherical harmonic referenced in the previous part, when multiplying Y 0
0 by Y 0

1 , is Y 0
1 ; since

this does in fact appear in our state, we get a non-zero result.

Note that the non-zero 〈z〉 depends on the linear combination; it does not happen for all of them.(
1
/√

2
)

(ψ210 + ψ211), for example, does have 〈z〉 = 0.

(d) In the previous part, we took an equal weight superposition of ψ100 (which has no θ, φ dependence) and
ψ210, whose θ, φ dependence is the same as z. Our desired state should thus replace ψ210 with a state
whose θ, φ dependence matches x rather than z. We know that x ∝ sin θ cosφ; looking at the spherical
harmonics, we see that both Y 1

1 and Y −1
1 have the correct θ dependence. To get the φ dependence right,

we use cosφ =
(
eiφ + e−iφ

)
/2. This tells us we need

(
Y 1
1 − Y −1

1

)
/
√

2. The desired state is thus

1√
2

(
ψ100 +

1√
2

(ψ211 − ψ21−1)

)
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