1. In three dimensions, we require

$$
\int\left|\Psi_{3 \mathrm{~d}}\right|^{2} d x d y d z=1
$$

as our normalization condition. The right-hand-side is dimensionless, so the left-hand-side must be as well. Each of $d x, d y, d z$ have units of L, so $\left|\Psi_{3 \mathrm{~d}}\right|^{2}$ must have units of L^{-3}. The wavefunction itself thus has units of $L^{-3 / 2}$ in three dimensions.
2. In one dimension, we require that

$$
\int|\Psi(x)|^{2} d x
$$

be finite. Since

$$
\int_{x_{0}}^{\infty} \frac{1}{x} d x=\left.\log x\right|_{x_{0}} ^{\infty}
$$

is infinite and

$$
\int_{x_{0}}^{\infty} \frac{1}{x^{1+p}} d x=-\left.\frac{1}{p x^{p}}\right|_{x_{0}} ^{\infty}=\frac{1}{p x_{0}^{p}}
$$

is finite for $p>0$, we have that the wavefunction must fall off faster than $1 / \sqrt{x}$ as $x \rightarrow \infty$. (Note that the behavior for small x does not matter as long as the wavefunction is finite because the range of the integration is finite; it's only when going out to infinity that the wavefunction must be not only finite but also small enough.) In three dimensions, we now require that

$$
\int|\Psi(x, y, z)|^{2} d x d y d z=\int|\Psi(r)|^{2} r^{2} \sin \theta d r d \theta d \phi
$$

be finite for a spherically symmetric wavefunction. The θ and ϕ integrals just give an overall factor of 4π; focusing on the r integral, we see there is an extra factor of r^{2} as compared to the one-dimensional case. $|\Psi(r)|^{2}$ must thus decay faster than $1 / r^{3}$ for the integral to infinity to be finite, so we need $\Psi(r)$ to fall off faster than $r^{-3 / 2}$ as $r \rightarrow \infty$.
3. (a).

Those vectors pointing away from the origin are $\hat{\mathbf{r}}$; the other four are $\hat{\theta}$. The $\hat{\phi}$ point into the page on the right and out of the page on the left.
(b) .

The probability current densities are shown above for particular 2D slices. Per the continuity equation, having a probability density that is constant in time requires having a probability current with zero divergence. The purely radial current has a source at the origin, so it is not divergenceless; the purely polar current has a source on the positive z-axis and a sink on the negative z-axis, so it is not divergenceless. The purely azimuthal current has no sources or sinks, so it is the only one of the three consistent with a constant probability density.
(c) Looking at the expression for the probability current, we see that it is proportional to the difference of the two terms $\Psi^{*} \vec{\nabla} \Psi$ and $\Psi \vec{\nabla} \Psi^{*}$. These terms are complex conjugates of each other, so their difference is proportional to the imaginary part of one of them. Furthermore, since each term has one factor of Ψ and one of Ψ^{*}, any overall phase will cancel. We thus only have a nonzero imaginary part if the gradient generates an imaginary part. From the expressions in lecture, we know that the only non-real part of $\psi_{n, l, m}$ comes from the ϕ dependence in the form of $e^{i m \phi}$. A ϕ derivative will bring down a factor of $i m$, which has a factor of i. This means the only possible non-zero spherical component of \vec{J} is the ϕ component.
(d) From the previous part, we know we only need to calculate the ϕ component. Since the only ϕ dependence of $\psi_{n, l, m}$ is $e^{i m \phi}$, the effect of a ϕ derivative is to bring down a factor of $i m$. We thus have

$$
\begin{aligned}
\vec{J} & =-\frac{i \hbar}{2 M}\left(e^{i E_{n} t / \hbar} \psi_{n, l, m}^{*}(\vec{r})(i m) e^{-i E_{n} t / \hbar} \psi_{n, l, m}(\vec{r}) \hat{\phi}-e^{-i E_{n} t / \hbar} \psi_{n, l, m}(\vec{r})(-i m) e^{i E_{n} t / \hbar} \psi_{n, l, m}^{*}(\vec{r}) \hat{\phi}\right) \\
& =\frac{\hbar m}{M}\left|\psi_{n, l, m}(\vec{r})\right|^{2} \hat{\phi}
\end{aligned}
$$

