Recon
Simple model of solids: some electron in outer shall are so loosely bound that we pretend the ore free FREE ELECTRON GAS
 particle in a box $V=0$ inside $V=\infty$ outside

$$
\begin{array}{r}
\psi\left(\vec{r}^{-1}=A \sin \left(k_{x} x\right) \sin \left(k_{y} y^{\prime} \sin \left(k_{z}\right)\right.\right. \\
k_{x}=\frac{\pi n_{y}}{L_{x}} \quad k_{y}=\frac{\pi n_{y}}{L_{y}} \quad k_{z}=\frac{\pi_{z}}{L_{z}}
\end{array}
$$

$\vec{k}^{\prime}=\left(k_{x} k_{y} k_{z}\right)$ WAVE VECTOR

$$
E=\frac{\hbar^{2} k^{2}}{2 m}=\frac{\hbar^{2} \pi^{2}}{2 m}\left[\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}+\frac{n_{y}^{2}}{L_{z}^{2}}\right][
$$

Compare with free particle

$$
\begin{aligned}
& \psi=e^{i \vec{k} \vec{r}^{\prime}}=\cos \frac{\vec{k}^{\prime} \vec{F}^{\prime}+i \sin \vec{h} \vec{\sigma}}{k x+k y+k z} \\
& \vec{k}=\frac{p^{-1}}{\hbar} \quad E=\frac{p^{2}}{2 m}=\left(\frac{\hbar^{2} k^{2}}{2 m} \quad \vec{k}\right. \text { con }
\end{aligned} \quad \rightarrow \text { toke ow }
$$

For single electron lowest energy state

$$
n_{x}=n_{y}=n_{z}=1
$$

= Fermions
Pauli exclusion principle (for half-integer spin) says that fermions counot be in the some quantum shote
Because of 2 spin states 1 or \downarrow, I con put 2 electrons in each "position" state. $\ln 2 D$:

Grid is filled wite $\sim 610^{23}-10^{24}$ electrons

$$
E \propto k^{2}=k_{x}^{2}+k_{y}^{2}
$$

Fill the grid so es to moke k^{2} as small as possible

$$
k_{F}=\operatorname{maximun} \text { of } k
$$

All states within k_{F} semicircle ore filled
For a given $N=$ \# of free electrons we should be able to figure out k_{f}

$$
N=\frac{\left(1 K_{4} \pi k_{F}^{2}\right.}{(a)} \times(2) \text { from } \mathrm{spin}
$$

Are of Are occupied quadrat by one stere

$$
N=\frac{1}{2} \pi k_{F}^{2} / \pi / L x l_{y}
$$

In 3D, Areas become volume

$$
a=\frac{\pi^{2}}{L_{x} L_{y}} \rightarrow v=\frac{\pi^{3}}{L_{x} L_{y} L_{z}}=\frac{\pi^{3}}{V}=\text { volume }
$$

The quarter circle becomes eights of sphere

$$
\begin{aligned}
& \begin{array}{l}
\frac{1}{4} \pi k_{F}^{2} \rightarrow \\
\\
\\
N=\frac{1}{8} \frac{4}{3} \pi k_{\rho}^{3} \\
\frac{k_{F}^{3}}{\pi^{2}}
\end{array} \quad \rho=\frac{N}{V}=\# \text { of electrons } \\
& \begin{array}{l}
\text { unit volume }
\end{array} \\
& k_{F}=\sqrt[3]{3 \rho \pi}
\end{aligned}
$$

FERMI SURFACE = Boundary in $k-$ space between the occupied end unoccupied states FERMI ENERGY $E_{F}=\frac{\hbar^{2} k^{2}}{2 m}=\frac{\hbar^{2}}{2 m}\left(3 \rho \pi^{2}\right)^{2 / 3}$

TOTAL ENERGY OF ELECTRON GAS

I know energy ot a given k

$$
E=\frac{\hbar^{2} k^{2}}{2 m}
$$

(1). We figure out how much energy is in shell $k \rightarrow k+d k$
(2) this energy $d E \alpha d k$
(3) $\cdot \int d E=\int_{0}^{k f} d d k$
(1) $d E=$ Number of states in shell \times Energy of each steve
(2) 2. Volume of shale $\frac{\frac{1}{8} 4 \pi k^{2} d k}{\pi^{3} / V}$

$$
\begin{aligned}
& d E=\frac{\frac{\hbar^{2} V}{2 m \pi^{2}} k^{4} d k}{E_{F}}=\int_{0}^{k_{F}} \frac{\hbar^{2} V}{2 m \pi^{2}} k^{4} d k=\frac{\hbar^{2} V}{10 m \pi^{2}} k_{F}^{5} \\
& E=\frac{\hbar^{2} V}{10 m \pi^{2}}(3 \rho \pi)^{5 / 3} \quad \rho=\frac{N}{V}
\end{aligned}
$$

$$
E=\frac{\hbar^{2}}{10 m \pi^{2}}(3 \pi N)^{5 / 3} \underbrace{V^{-2 / 3}}_{\varepsilon}=\frac{A V^{-2 / 3}}{B}
$$

If volume increases energy decreases

$$
\begin{aligned}
& \frac{d E}{d V}=-\frac{2}{3} A V^{-5 / 3}=-\frac{2}{3} \frac{A V^{-3 / 2}}{V}=-\frac{2}{3} \frac{E}{V} \\
& d E=-\frac{2}{3} E \frac{d V}{V}
\end{aligned}
$$

lass of E by gas $=$ work done on outside $d W$

$$
d W=P d V=|d E|=\frac{2}{3} E \frac{d V}{V}
$$

$P=\frac{2}{3} \frac{E}{V}$ Electron degencrey pressure
Prevents collapse of a white dwort!

$$
P, n \quad S=1 / 2
$$

$\checkmark l$

$$
\begin{aligned}
& |\psi\rangle \psi(x) \\
& \langle\langle\mid \psi\rangle=\psi(x)
\end{aligned}
$$

