Physics 115B, Problem Set 9

Not to be graded

1 Parity

We can classify operators depending on how they transform under parity, $\mathcal{O} \rightarrow \hat{\Pi}^{\dagger} \mathcal{O} \hat{\Pi}$.
(a) In one dimension, show that position and momentum operators are odd under parity.
(b) In three dimensions, operators that are invariant under parity and commute with \vec{L} are called scalar operators, $\hat{\Pi}^{\dagger} \mathcal{O}_{s} \hat{\Pi}=\mathcal{O}_{s}$. Operators that flip sign under parity and commute with \vec{L} are called pseudoscalar operators, $\hat{\Pi}^{\dagger} \mathcal{O}_{p} \hat{\Pi}=-\mathcal{O}_{p}$. Show that scalar operators satisfy $\left[\hat{\Pi}, \mathcal{O}_{s}\right]=0$, while pseudoscalar operators satisfy $\left\{\hat{\Pi}, \mathcal{O}_{p}\right\}=0$ (here $\{A, B\}$ denotes the anticommutator, $\{A, B\}=A B+B A$).
(c) Operators that flip sign under parity and whose commutators with \vec{L} are like those of \vec{L} itself are called vector operators, and $\hat{\Pi}^{\dagger} \mathcal{O}_{v} \hat{\Pi}=-\mathcal{O}_{v}$. Operators that are invariant under parity and whose commutators with \vec{L} are like those of \vec{L} itself are called axial vector operators, $\hat{\Pi}^{\dagger} \mathcal{O}_{a} \hat{\Pi}=\mathcal{O}_{a}$. Show that vector operators satisfy $\left\{\hat{\Pi}, \mathcal{O}_{v}\right\}=0$, while axial vector operators satisfy $\left[\hat{\Pi}, \mathcal{O}_{a}\right]=0$.
(d) Give an example of a scalar operator, a pseudoscalar operator, a vector operator, and an axial vector operator (feel free to Google around to find some examples).

2 Vector Operators

For any vector operator \vec{V}, one can define raising and lowering operators

$$
V_{ \pm}=V_{x} \pm i V_{y}
$$

(a) Using the criterion for being a vector operator (namely $\left[L_{i}, V_{j}\right]=i \hbar \epsilon_{i j k} V_{k}$), show that

$$
\begin{gathered}
{\left[L_{z}, V_{ \pm}\right]= \pm \hbar V_{ \pm}} \\
{\left[L^{2}, V_{ \pm}\right]=2 \hbar^{2} V_{ \pm} \pm 2 \hbar V_{ \pm} L_{z} \mp 2 \hbar V_{z} L_{ \pm}}
\end{gathered}
$$

(b) Show that, if ψ is an eigenstate of L^{2} and L_{z} with eigenvalues $\hbar^{2} \ell(\ell+1)$ and $\hbar \ell$, respectively, then either $V_{+} \psi$ is zero or $V_{+} \psi$ is also an eigenstate of L^{2} and L_{z} with eigenvalues $\hbar^{2}(\ell+2)(\ell+1)$ and $(\ell+1) \hbar$, respectively. This means that acting on a state with maximal $m=\ell$, the operator V_{+}either raises both the ℓ and m values by 1 , or destroys the state.

3 More Isospin

Refer to Homework 8, Problem 4 for an explanation of isospin (I). Consider the Δ^{++} particle, which is a bound state of three u quarks (uuu).
(a) What are the I and I_{3} quantum numbers of the Δ^{++}particle?
(b) By acting on the Δ^{++}state with the isospin lowering operator I_{-}we obtain a uud state of the same I but with I_{3} lowered by one unit. This is the Δ^{+}state. The decay of the Δ^{+}into a nucleon (p or n) and a pion $\left(\pi^{+}, \pi^{0}, \pi^{-}\right)$is mediated by the strong interaction, which conserves I and I_{3}, as well as (of course) charge. What is the ratio of probabilities for the decays $\Delta^{+} \rightarrow p \pi^{0}$ and $\Delta^{+} \rightarrow n \pi^{+}$. (As explained in Homework 8, Problem 4, the probability of a particular process is proportional to the square of the matrix element of some operator sandwiched between the initial and the final state).

4 Pauli Matrices, Spin Rotations

Let σ_{i} be the Pauli matrices. The spin operators in matrix form for $s=\frac{1}{2}$ states are $S_{i}=\frac{\hbar}{2} \sigma_{i}$.
(a) Show that $\sigma_{i}^{2}=1$.
(b) Show that the Pauli matrices anticommute, ie, $\left\{\sigma_{i} \sigma_{j}\right\}=\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=0$ if $i \neq j$.
(c) The unitary operator that generates a rotation by θ about an axis defined by the direction of the unit vector \hat{n} is $R=\exp (i \theta \hat{n} \cdot \vec{S} / \hbar)$.
Show that $R=\cos \frac{\theta}{2}+i \hat{n} \cdot \vec{S} \sin \frac{\theta}{2}$.
(d) What happens if you rotate the spin up and spin down states by 180° around the x -axis? Around the y -axis?

