Physics 115B, Problem Set 6

Due Friday, May 13, 5pm

Every problem is worth 10 points. Every sub-question is worth the same, unless otherwise specified.

1 Vector potential

Derive Equation 4.211 in Griffiths, starting with Equation 4.210.

2 Clebsch-Gordanalysis

- (a) A particle of spin $s_1 = 3/2$ and a particle of spin $s_2 = 1/2$ are at rest in a configuration where the total spin of the two particles is 1 and a measurement of the total spin of the two particles in the \hat{z} direction yields $-\hbar$. If you then measured the spin of the spin-3/2 particle in the \hat{z} direction, what values might you obtain, and with what probabilities?
- (b) Imagine that the outcome of your measurement in part (a) was $-3\hbar/2$. You subsequently measure the total spin of the two-particle system. What values might you obtain, and with what probabilities?
- (c) An electron with spin up in the \hat{z} direction is in the state $\psi_{4,2,-1}$ of the hydrogen atom. If you measured the total angular momentum (orbital angular momentum plus spin) of the electron, what values might you obtain, and with what probabilities?
- (d) Imagine that the outcome of your measurement of the total angular momentum in part (c) found j = 3/2. You subsequently measure the spin of the electron in the \hat{z} direction. What is the probability that your result is $-\hbar/2$?

3 Spin Angles

Suppose two spin-1/2 particles are known to be in the $|00\rangle$ state in the coupled basis (this is known as the "spin singlet" state). Let $S_{1,a}$ be the component of the spin of particle 1

in the direction of the vector \hat{a} . Similarly, let $S_{2,b}$ be the component of the spin of particle 2 in the direction of the vector \hat{b} . Show that

$$\langle S_{1,a}S_{2,b}\rangle = -\frac{\hbar^2}{4}\cos\theta$$

where θ is the angle between \hat{a} and b.

Hint: since we are working in the $|00\rangle$ state, there is clearly no preferred direction in space. Thus, it may help to take one of \hat{a} or \hat{b} in a conveniently simple direction. Also, you may want to use equation 4.155 from Problem 4.33. (I will include in my solutions also a solution to problem 4.33 – you are welcome to try it yourself, but you do not have to turn it in).

4 Decaying Particle

This problem involves the decay of an unstable particle C to particles A and B, in which total angular momentum is conserved. In the rest frame of C, the total angular momentum $\vec{J} = \vec{S}_C$ is just the spin of the particle C. After the decay, the total angular momentum consists of three terms,

$$\vec{J} = \vec{S}_A + \vec{S}_B + \vec{L}$$

where \vec{S}_A is the spin of particle A, \vec{S}_B is the spin of particle B, and \vec{L} is the orbital angular momentum between A and B. Conservation of angular momentum in this decay means that if the initial state is an eigenstate of J^2 and J_z , then the final state is also an eigenstate with the same eigenvalues.

- (a) Consider the case where C is a spin-0 particle and A, B are both spin-1/2 particles $(s_A = s_B = 1/2)$. What values of the orbital angular momentum ℓ are consistent with angular momentum conservation? (3 points)
- (b) Repeat the above problem, but now where C is a spin-3/2 particle, A is a spin-1/2 particle, and B is a spin-1 particle. (3 points)
- (c) There are certain processes for which a two-body decay is forbidden. Explain why a neutron n cannot decay to a proton p and an electron e^- (all spin-1/2 fermions), despite this being consistent with energy and charge conservation. (4 points)

5 Particle in a field

Consider a particle with charge q, mass m, and spin s, in a **uniform** magnetic field \vec{B}_0 and subject to a central potential V(r). The vector potential can be chosen as

$$\vec{A} = -\frac{1}{2}\vec{r} \times \vec{B}_0$$

- (a) Verify that this potential satisfies $\nabla \cdot \vec{A} = 0$, i.e., we are working in the Coulomb gauge. (2 points)
- (b) Verify that the vector potential produces a uniform magnetic field \vec{B}_0 . (3 points)
- (c) Show that the Hamiltonian can be written as

$$H = \frac{p^2}{2m} + V(r) + q\varphi - \vec{B}_0 \cdot (\gamma_0 \vec{L} + \gamma \vec{S}) + \frac{q^2}{8m} \left[r^2 B_0^2 - (\vec{r} \cdot \vec{B}_0)^2 \right]$$

where $\gamma_0 = q/2m$ is the gyromagnetic ratio for orbital motion. (5 points)

Note: the term linear in \vec{B}_0 makes it energetically favorable to for the magnetic moments (orbital and spin) to align with the magnetic field (**paramagnetism**). The terms quadratic in B_0 lead to the opposite effect (**diamagnetism**). This last statement is not immediately obvious.