Physics 115B, Problem Set 3

Due Friday, April 22, 5pm

Every problem is worth 10 points.

Every sub-question is worth the same, unless otherwise specified.

1 Angular Ladder

As we have seen in lecture, the raising and lowering operators for angular momentum change the value of m by one unit. However, if the eigenstates $|\ell, m\rangle$ are normalized, we are only guaranteed that $L_{ \pm}|\ell, m\rangle \propto|\ell, m \pm 1\rangle$, up to scaling factors $\alpha_{ \pm}(\ell, m)$:

$$
L_{+}|\ell, m\rangle=\alpha_{+}(\ell, m)|\ell, m+1\rangle \quad L_{-}|\ell, m\rangle=\alpha_{-}(\ell, m)|\ell, m-1\rangle
$$

Determine $\alpha_{ \pm}(\ell, m)$ assuming the states $|\ell, m\rangle$ are normalized.
Hint: Recall that $L_{+}^{\dagger}=L_{-}$and take the inner product of both sides of the first equation.

2 Angular Algebra

(a) Starting with the commutation relations for position and momentum in Euclidean coordinates, work out the commutators $\left[L_{z}, x\right],\left[L_{z}, p_{x}\right],\left[L_{z}, y\right],\left[L_{z}, p_{y}\right],\left[L_{z}, z\right],\left[L_{z}, p_{z}\right]$. (4 points)
(b) Use your results from part (a) and the definitions $L_{x}=y p_{z}-z p_{y}, L_{y}=z p_{x}-x p_{z}$ to verify that $\left[L_{z}, L_{x}\right]=i \hbar L_{y}$. (3 points)
(c) Find the commutators $\left[L_{z}, r^{2}\right]$ and $\left[L_{z}, p^{2}\right]$, where $r^{2}=x^{2}+y^{2}+z^{2}$ and $p^{2}=p_{x}^{2}+$ $p_{y}^{2}+p_{z}^{2}$. (3 points)

Now here is the important point. In part (c) you have shown that L_{z} commutes with r^{2} and p^{2}. Since there is nothing special about the z-axis, the same would hold for L_{x} and L_{y} and thus for L^{2}. The hamiltonian H for a particle in a spherically symmetric potential is a function of $r=\sqrt{r^{2}}$ and p^{2}, and so it commutes with L^{2} as well as all of L_{x}, L_{y}, and L_{z} individually. However the individual components of angular momentum do not commute
with each other, ie, $\left[L_{i}, L_{j}\right]=i \hbar \epsilon_{i j k} L_{k}$. Therefore H, L^{2}, and one of the L_{i} 's form a set of compatible observables. The conventional choice is to label the eigenstates in terms of the eigenvalues of H, L^{2}, and L_{z}.

3 Angular Ehrenfest

Remember the Ehrenfest theorem. If the operator \hat{A} is time independent, then

$$
\frac{d}{d t}\langle A\rangle=\frac{1}{i \hbar}\langle[\hat{A}, H]\rangle
$$

(a) Show that for a particle in a general potential $V(\vec{r})$, the rate of change of the expectation value of the orbital angular momentum \vec{L} is equal to the expectation value of the torque $\vec{N}=\vec{r} \times(-\nabla V)$,

$$
\frac{d}{d t}\langle\vec{L}\rangle=\langle\vec{N}\rangle
$$

(b) Show that $d\langle\vec{L}\rangle / d t=0$ for any spherically symmetric potential. This is the quantum analog of the classical conservation of angular momentum.

