Physics 115 B HWK 2 page
(1) We actually did this in clan!
(0) $\vec{r}^{-1} \vec{\nabla}=r \hat{r} \cdot\left(\hat{r} \frac{\partial}{\partial r}+\frac{\hat{\theta}}{r} \frac{\partial}{\partial \theta}+\frac{\hat{\theta}}{r \sin \theta} \frac{\partial}{\partial \theta}\right)$

$$
\left\lvert\, \vec{r} \vec{\nabla}=r \frac{\partial}{\partial r}\right.
$$

Next we need $\bar{V} \cdot\left(\frac{\vec{r}}{r}\right)$ -
Coreful, this is eu opeodor - So let's see what it does on a function ψ

$$
\begin{aligned}
\vec{\nabla}^{-1}\left(\frac{r^{-1}}{r} \psi\right) & =\left(\begin{array}{c}
-1 \\
\bar{\nabla} \\
r
\end{array}\right) \psi+\hat{r} \vec{\nabla}^{-1} \psi \\
& =\left[\sum \frac{\partial}{\partial x_{i}}\left(\frac{x_{i}}{r}\right)\right] \psi+\frac{\partial \psi}{\partial r}
\end{aligned}
$$

Where I wrote the first term in Cortesien end used the "boxed" expression fr-
the second term - Thus

$$
\begin{aligned}
& \vec{\nabla}\left(\overrightarrow{\vec{~}} \vec{r}^{r} \psi\right)=\left(\sum\left(\frac{1}{r} \frac{\partial x_{i}}{\partial x_{i}}+x_{i} \frac{\partial\left(y_{i}\right)}{\partial x_{i}}\right)\right) \psi+\frac{\partial \psi}{\partial r} \\
& \nabla^{-1}\left(\frac{E}{r} \psi\right)=\left(\sum\left(\frac{1}{r}+\frac{-x_{1} \cdot \frac{2 x_{x}}{r^{2}}}{r^{2}}\right)\right) \psi+\frac{\partial \psi}{\partial r} \\
& \vec{\nabla}\left(\frac{I^{-}}{r} \psi\right)=\frac{3}{r} \psi-\sum \frac{x_{c}^{2}}{r^{3}} \psi+\frac{\partial \psi}{\partial r} \\
& \vec{\nabla}\left(\vec{r}(\vec{r} \psi)=\frac{3}{r} \psi-\frac{r}{r^{2}} \psi+\frac{\partial \psi}{f r}\right. \\
& \bar{\nabla}^{-1}\left(\frac{\bar{r}}{r} \psi\right)=\left(\frac{2}{r}+\frac{\partial}{\partial r}\right) \psi
\end{aligned}
$$

Putting the two boxed equations together

$$
\begin{aligned}
P_{r} & =\frac{1}{2}(\hat{r} \vec{p}+\vec{p} \vec{r})=-\frac{i \hbar}{2}\left(\frac{1}{r} \vec{r} \vec{V}+\vec{\nabla} \vec{r} \vec{r}\right)= \\
& =-\frac{i \hbar}{2}\left(\frac{d}{\partial r}+\frac{2}{r}+\frac{\partial}{\partial r}\right)=-i\left(\frac{\partial}{\partial r}+\frac{1}{r}\right)
\end{aligned}
$$

About the Hermition property:
From the previous discussion,

$$
\hat{r} \vec{p}^{-1}-\vec{p} \cdot \hat{r}=\frac{2 i \hbar}{r}
$$

Which means that $\left(\hat{r} \vec{p}^{-1}\right)^{+}=\hat{p}^{-1} \hat{r} \neq \hat{r}^{-1}$
(b)

$$
\begin{aligned}
& P_{r}^{2} \psi=-\hbar^{2}\left(\frac{\partial}{\partial r}+\frac{1}{r}\right)\left(\frac{\partial}{\partial r}+\frac{1}{r}\right) \psi \\
= & -\hbar^{2}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{1}{r^{2}}\right) \psi \\
= & -\hbar^{2}\left(\frac{\gamma^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}\right) \psi=-\frac{\hbar^{2}}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right) \psi
\end{aligned}
$$

(2) (Q) Note that $\left[\begin{array}{r}\Gamma \\ \Gamma\end{array}\right]=0 \quad\left[\operatorname{Pr} P P_{r}\right]=0$

Therefore

$$
\left.\left.\begin{array}{l}
{[\operatorname{Pr} r} \\
{[}
\end{array}\right]=-i \hbar\left[\frac{\partial}{\partial r} r\right]=-i \hbar\right]+\left[\operatorname{Pr} \frac{1}{r}\right]=-i \hbar\left[\frac{\partial}{\partial r} \frac{1}{r}\right]=\frac{i \hbar}{r^{2}}
$$

Then

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{l} & a_{l}^{+}
\end{array}\right]=\frac{1}{2 m \hbar \omega}\left(-i(l+1) \hbar\left[\operatorname{pr}_{r} \frac{1}{r}\right]+\right.} \\
& \text { +wm } \omega\left[\begin{array}{ll}
P_{r} & r
\end{array}\right]+ \\
& +i(\ell+1) \hbar\left[\frac{1}{r} P_{r}\right]+ \\
& \left.-i m \omega\left[\begin{array}{rl}
r & P_{r}
\end{array}\right]\right) \\
& {\left[a_{1} l_{l}^{+}\right]=\frac{1}{2 m \hbar \omega}\left[\frac{2 \hbar^{2}(l+1)}{r^{2}}+2 \hbar m \omega\right]} \\
& {\left[\begin{array}{ll}
a_{\ell} & a_{\ell}^{+}
\end{array}\right]=\frac{(\ell+1) \hbar}{m \omega r^{2}}+1}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \hbar \omega a_{l}^{+} a_{l}= \frac{1}{2 m}\left(-i p_{r}-(l+1) \frac{\hbar}{r}+m \omega r\right) . \\
& \quad\left(+i p_{r}-(l+1) \frac{\hbar}{r}+m \omega r\right) \\
&= \frac{1}{2 m}\left(P_{r}^{2}+i(l+1) \hbar p\left(\frac{1}{r}\right)-i m \omega p_{r} r\right. \\
&-i(l+1) \hbar \frac{1}{r} P_{r}+(l+1)^{2} \frac{\hbar^{2}}{r^{2}}+ \\
&-\left.2(l+1) \hbar m \omega+i m \omega r \rho_{r}+m^{2} \omega^{2} r^{2}\right) \\
&= \frac{1}{2 m}\left(P_{r}^{2}+i \hbar(l+1)\left[p_{r} \frac{1}{r}\right]-i m \omega\left[\rho_{r} r\right]\right. \\
&\left.+(l+1)^{2} \frac{\hbar^{2}}{r^{2}}-2(l+1) \hbar m \omega+m^{2} \omega^{2} r^{2}\right) \\
&=\frac{1}{2 m}\left(\rho_{r}^{2}-\frac{\hbar^{2}(l+1)}{r^{2}}-\hbar m \omega+\frac{\hbar^{2}(l+1)^{2}}{r^{2}}+\right. \\
&\left.\quad-2(l+1) \hbar m \omega+m^{2} \omega^{2} r^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \hbar w a_{l}^{+} a_{l}=\frac{p_{r}^{2}}{2 m}+\frac{\hbar^{2} l(l+1)}{2 m r^{2}}+\frac{1}{2} m \omega^{2} r^{2}-\left(l+\frac{3}{2}\right) \hbar \omega \\
& \hbar w \theta_{l}^{+} \theta_{l}=H_{l}-\left(l+\frac{3}{2}\right) \hbar w \\
& \Rightarrow H_{l}=\hbar \omega\left[a_{l}^{+} a_{l}+\left(l+\frac{3}{2}\right)\right]
\end{aligned}
$$

(c) Take R_{l+1} such that $H_{l+1} R_{l+1}=E R_{l+1}$

Then $a_{l}^{+} H_{l+1} R_{l+1}=E a_{l}^{+} R_{l+1}$
From lecture $Q_{e} H_{l}=H_{l+1} Q_{l}+\hbar \omega Q_{l}$
Taking hermitian conjugate of both sides

$$
H_{l} Q_{l}^{+}=Q_{l}^{+} H_{l+1}+\hbar \omega Q_{l}^{+}
$$

Take both left and right hond side and
moke then act on Rets page 7 This gives

$$
H_{l}\left(l_{l}^{+} R_{l+1}\right)=(E+\hbar \omega)\left(\theta_{l}^{+} R_{l+1}\right)
$$

Thus $Q_{\rho}^{+} R_{l+1}$ is a state of energy $E+\hbar \omega$ and en eigenfunction of He
(3) (a) This is toking whit we have done in clan end setting $V(r)=0$
(b) $Q_{l}^{+} \theta_{l}=\frac{1}{2 m}\left(p_{r}^{2}+\frac{\hbar^{2}(l+1)^{2}}{r^{2}}+i\left(l_{1}\right)\left[P_{r} \frac{1}{r}\right]\right)$

The commutator $\left[p_{r} \frac{1}{r}\right]=\frac{i \hbar}{r^{2}}$
from problem 2(a)

Thus $\quad a_{1}^{+} a_{l}-\frac{1}{2 M}\left[P_{r}^{2}-\frac{\hbar^{2}(l+1)}{r^{2}}+\frac{\hbar^{2}(l+1)^{2}}{r^{2}}\right]$

$$
a_{l}^{+} a_{l}=\frac{1}{2 M}\left(P_{r}^{2}+\frac{l(l+1) \hbar^{2}}{r^{2}}\right)=H_{l}
$$

(c) $\left[a_{e} a_{l}^{+}\right]=\frac{1}{M}\left[-i(\ell+1) \hbar\left[P_{r} \frac{1}{r}\right]\right)=\frac{\hbar^{2}(l+1)}{M r^{2}}$

And olso

$$
\begin{aligned}
& H_{l+1}-H_{l}=\frac{\hbar^{2}(l+1)}{2 M r^{2}}[(l+2)-l] \\
& H_{l+1}-H_{l}=\frac{\hbar^{2}(\ell+1)}{M r^{2}}
\end{aligned}
$$

So $\left[\begin{array}{ll}a_{l} & a_{l}^{+}\end{array}\right]=H_{l+1}-H_{l}$
(d)

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{l} & H_{l}
\end{array}\right]=\left[\begin{array}{ll}
a_{l} & a_{l}^{+} \\
a_{l}
\end{array}\right]=} \\
& =a_{l} a_{l}^{+} a_{l}-a_{l}^{+} a_{l} a_{l}=\left[a_{l} a_{l}^{+}\right] a_{l} \\
& {\left[a_{l} H_{l}\right]=\left(H_{l+1}-H_{l}\right) a_{l}} \\
& a_{l} H_{l}-H_{l} l_{l}=H_{l+1} l_{l}-H_{l} Q_{l} \\
& a_{l} H_{l}=H_{l+1} a_{l}
\end{aligned}
$$

Then if we have a solution

$$
H_{l} R_{l}=E R_{e}
$$

acting with Q_{e} on both sides gives

$$
H_{e+1}\left(a_{l} R_{e}\right)=E\left(Q_{e} R_{e}\right)
$$

So $a_{l} R_{l}$ in a soltn witt the same E but with $l-1 l+1$
(e) Stucting with a solution (E l) we can build more and more puget 10 solutions with some E but higher and higher l _ This securs like en impossibility since eg clorically $L=m v r$ so you'd think that increoring L meows increasing $E=\frac{1}{2} m v^{2}$ end you cannot do that at infinitum. But there n a "r" factor in L - So as L car become as loge es you wout with out having v become inconsistent with filed $E=\frac{1}{2} m v^{2}$, just by inverosity
(4) From the chain rule page 11
(e) $\frac{\partial}{\partial \vec{x}_{e}}=\frac{\partial \vec{x}}{\partial \vec{x}_{e}} \frac{\partial}{\partial \vec{x}}+\frac{\partial \vec{r}}{\partial \vec{x}_{e}} \frac{\partial}{\partial \vec{r}}=\frac{m_{e}}{m_{e}+m_{p}} \frac{\partial}{\partial \vec{x}}+\frac{\partial}{\partial \vec{r}}$

Then toking the dot product of each side with itself

$$
\nabla_{e}^{2}=\left(\frac{m_{e}}{m_{e}+m_{p}}\right)^{2} \nabla_{\vec{x}}^{2}+\nabla_{r}^{2}+\frac{2 m_{e}}{m_{e}+m_{p}} \frac{\partial^{2}}{\partial_{x}^{-1} d r^{-1}}
$$

Doing the Some manipulations whet $\frac{\partial}{\partial x p}$ gives

$$
\nabla_{p}^{2}=\left(\frac{m_{p}}{m_{e}+m_{p}}\right)^{2} \bar{V}_{\bar{x}}^{-1}+\nabla_{\Gamma}^{2}-\frac{2 m_{p}}{m_{l}+m_{p}} \frac{\partial^{2}}{\partial_{\bar{x}}^{-1} \partial_{\Gamma}^{-1}}
$$

(b) $\frac{1}{m_{e}} \nabla_{e}^{2}+\frac{1}{m_{p}} \nabla_{p}^{2}=\frac{m_{e}}{M^{2}} \nabla_{x}^{2}+\frac{m_{p}}{M^{2}} \nabla_{x}^{2}+\left(\frac{1}{m_{e}}+\frac{1}{m_{p}}\right) \nabla_{p}^{2}$

$$
\left(\begin{array}{l}
\text { where } M=m_{p}+m_{e} \\
\rightarrow=\frac{1}{M} \nabla_{x}^{2}+\frac{1}{\Gamma} \nabla_{r}^{2} \quad \text { where } \mu=\frac{m_{e} m_{p}}{M}
\end{array}\right.
$$

Substituting intr the origins H we get the desired expression puagel2)

$$
\frac{\hbar^{2}}{2 M} \nabla_{x}^{2} \psi-\frac{\hbar^{2}}{2 \mu} \nabla_{r} \psi-\frac{e^{2}}{4 \pi \varepsilon_{0} r} \psi=E \psi
$$

(c) $\psi=F(\vec{X}) \phi(\vec{r})$

Plug g into the SE, dixie by F ϕ, get

$$
-\frac{1}{F} \frac{\hbar^{2}}{2 \mu} \nabla_{\lambda}^{2} F-\frac{1}{\phi} \frac{\hbar^{2}}{2 \mu} \nabla_{r}^{2} \phi-\frac{e^{2}}{4 \pi \xi_{0} r}=E
$$

Spelt it into

$$
\begin{aligned}
& \frac{-\hbar^{2}}{2 M} \nabla_{x}^{2} F(-1)=E_{k} F(\vec{x}) \\
& -\frac{\hbar^{2}}{2 \mu} \nabla_{\Gamma}^{2} \phi(\vec{r})-\frac{1}{4 \pi \varepsilon_{0} r} \phi(t)=E_{H} \phi(\vec{r})
\end{aligned}
$$

with $E=E_{k}+E_{r}$

The hst equation is associated with the motion (Kinetic energy) of the enter of moss. The second equation is essocieted with the "binding" of the electron into the He tom
(5) (e) $\psi_{100}=\frac{1}{\sqrt{\pi a_{0}^{3}}} e^{-r / a_{0}}$

$$
\begin{aligned}
& \langle r\rangle=\frac{1}{\pi a_{0}^{3}} \int d \Omega \int_{0}^{\infty} r^{3} e^{-2 r / a_{0}} d r \\
& \langle r\rangle=\frac{4 \pi}{\pi Q_{0}^{3}} \int_{0}^{\infty} r^{3} e^{-2 r / a_{0}} d r
\end{aligned}
$$

Looking up integral $\int_{0}^{\infty} x^{n} e^{-b x}=\frac{n!}{b^{n+1}}$

$$
\langle r\rangle=\frac{4}{a_{0}^{3}} \frac{6 a_{0}^{4}}{2^{4}} \quad\langle r\rangle=\frac{3}{2} a_{0}
$$

$$
\begin{aligned}
& \left\langle r^{2}\right\rangle=\frac{4}{a_{0}^{3}} \int_{0}^{\infty} r^{4} e^{-2 r / e_{0}} d r \text { page } 14 \\
& \left\langle r^{2}\right\rangle=\frac{4}{a_{0}^{3}} \frac{24 a_{0}^{5}}{2^{5}} \quad\left\langle r^{2}\right\rangle=3 a_{0}^{2}
\end{aligned}
$$

(b) Looking up solutious

$$
\begin{aligned}
& \psi_{n, n-1, m}= \frac{1}{\sqrt{(2 n)!}}\left(\frac{2}{n a_{0}}\right)^{3 /}\left(\frac{2 F}{n a_{0}}\right)^{n-1} \\
& e^{-F / n e_{0}} Y_{n-1}^{m}(\theta, \phi)
\end{aligned}
$$

The normalizetion of the $Y_{l}^{m} n$ teken into eccomit entometrally

$$
\begin{aligned}
& \text { Thus } \begin{aligned}
\langle r\rangle=\frac{1}{(2 n)!}\left(\frac{2}{n a_{0}}\right)^{2 n+1} & \int_{0}^{\infty} r^{3}\left(\frac{2}{n a_{0}}\right)^{2(n-1)} r^{2 n-2} \\
& e^{-2 r / n a_{0}} d r
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \langle r\rangle=\frac{1}{(2 n)!}\left(\frac{2}{n a_{0}}\right)^{2 n+1} \frac{(2 n+1)!\text { page } 15}{\left(2 / n \theta_{0}\right)^{2 n+2}} \\
& \langle r\rangle=\frac{(2 n+1)!}{2(2 n)!} n a_{0}=n\left(n+\frac{1}{2}\right) a_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Similarly } \\
& \left\langle r^{2}\right\rangle=\frac{1}{(2 n)!}\left(\frac{2}{n a_{0}}\right)^{2 n+1} \frac{(2 n+2)!}{\left(2 / n a_{0}\right)^{2 n+3}} \\
& \left\langle r^{2}\right\rangle=\frac{(2 n+2)!}{4(2 n)!} n^{2} a_{0}^{2}=n^{2}(n+1)\left(n+\frac{1}{2}\right) a_{0}^{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \text { RMS }=\sqrt{n^{2}(n+1)\left(n+\frac{1}{2}\right)-n^{2}\left(n+\frac{1}{2}\right)^{2}} a_{0} \\
& \text { RMS }=n a_{0} \sqrt{\left(n+\frac{1}{2}\right)\left(n+1-n-\frac{1}{2}\right)} \\
& \text { RMS }=n \sqrt{\frac{1}{2}\left(n+\frac{1}{2}\right)} a_{0}=\frac{1}{2} n \sqrt{2 n+1} a_{0}
\end{aligned}
$$

(d) For large $n,\langle r\rangle \sim n^{2} a_{0}$ page 16.

Compere it with $\langle r\rangle=\frac{3}{2}$, for the ground striate.
So, for $n=100$, radius $\bar{n} \sim 10^{4}$ longer, volume in $\sim 10^{12}$ larger
(6) Compared with the H atom, everything looks the some in the SE expect that $e^{2} \rightarrow Z_{e}^{2}$, Since the energy eigenvalues come from solving $S E$, we simply hove to replace e with $Z e$ in the Rydberg constient. Now, the Rydberg constunt goes like e^{4}, so

$$
\begin{aligned}
& R(z)=Z^{2} R(z=1) \\
& E(z)=Z^{2} E(z=1)
\end{aligned}
$$

OTOH, the Bohr radius gobs like $\frac{1}{e^{2}}$ therefore

$$
a_{0}(z)=a_{0}(z=1) / z
$$

page $1 t$

