Physics 115B, Problem Set 2

Due Friday, April 15, 5pm

Every problem is worth 10 points. Every sub-question is worth the same, unless otherwise specified.

1 Radial Momentum

In lecture, we argued for an appropriate definition of the operator corresponding to momentum in the radial direction,

$$
p_{r} \equiv \frac{1}{2}(\hat{r} \cdot \vec{p}+\vec{p} \cdot \hat{r})=-\frac{i \hbar}{2}\left(\frac{1}{r} \vec{r} \cdot \nabla+\nabla \cdot(\vec{r} / r)\right)
$$

(a) Compute $\hat{r} \cdot \vec{p}-\vec{p} \cdot \hat{r}$. Use your result to show that $\hat{r} \cdot \vec{p}$ is not Hermitian, and hence cannot itself be identified with momentum in the radial direction.
(b) Now using the definition of p_{r} given above, show that

$$
p_{r}^{2}=-\frac{\hbar^{2}}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)
$$

2 Algebraic Harmonic Oscillator

In lecture we noted that the 3d harmonic oscillator could be solved in spherical coordinates with algebraic techniques, where the effective radial Hamiltonian H_{ℓ} acting on a radial wavefunction R_{ℓ} could be expressed in terms of the lowering operator

$$
a_{\ell} \equiv \frac{1}{\sqrt{2 m \hbar \omega}}\left[i p_{r}-\frac{(\ell+1) \hbar}{r}+m \omega r\right]
$$

(a) Show explicitly that $\left[a_{\ell}, a_{\ell}^{\dagger}\right]=\frac{(\ell+1) \hbar}{m \omega r^{2}}+1$ (4 points)
(b) Show explicitly that $H_{\ell}=\hbar \omega\left(a_{\ell}^{\dagger} a_{\ell}+(\ell+3 / 2)\right)$ (3 points)
(c) Show explicitly that a_{ℓ}^{\dagger} is a raising operator that takes a state of given total energy E_{n} and fixed ℓ into a state of higher total energy $E_{n}+\hbar \omega$ with $\ell \rightarrow \ell-1$. (3 points)

3 Algebraic Free Particle

(every sub-question worth 2 points) Consider a stationary state $\psi_{\ell, m}(r, \theta, \phi)$ of energy E and fixed ℓ, m describing a free particle of mass M in three dimensions in spherical coordinates.
(a) Starting from the time-independent Schrödinger equation satisifed by ψ_{ℓ}, show that the radial part of the wavefunction $R_{\ell}(r)$ satisfies $H_{\ell} R_{\ell}=E R_{\ell}$, where

$$
H_{\ell} \equiv \frac{1}{2 M}\left(p_{r}^{2}+\frac{\ell(\ell+1) \hbar^{2}}{r^{2}}\right)
$$

What is the physical interpretation of H_{ℓ} in this case?
(b) Show that you can write $H_{\ell}=a_{\ell}^{\dagger} a_{\ell}$, where now

$$
a_{\ell} \equiv \frac{1}{\sqrt{2 M}}\left(i p_{r}-\frac{(\ell+1) \hbar}{r}\right)
$$

(c) Show that $\left[a_{\ell}, a_{\ell}^{\dagger}\right]=H_{\ell+1}-H_{\ell}$
(d) Compute $\left[a_{\ell}, H_{\ell}\right]$. What is the state $a_{\ell} R_{\ell}$?
(e) Show that (in contrast to the harmonic oscillator) for any fixed $E>0$ there is no upper bound on ℓ. Interpret this physically.

4 Good Coordinates for the Hydrogen Atom

The Hamiltonian describing an electron, a proton, and their electrostatic binding energy (collectively, the hydrogen atom) in position space is

$$
H=-\frac{\hbar^{2}}{2 m_{p}} \nabla_{p}^{2}-\frac{\hbar^{2}}{2 m_{e}} \nabla_{e}^{2}-\frac{e^{2}}{4 \pi \epsilon_{0}\left|\vec{x}_{e}-\vec{x}_{p}\right|}
$$

where the subscripts p, e respectively denote the proton and the electron, and e.g. ∇_{p}^{2} implies the use of derivatives with respect to the components of \vec{x}_{p}. This depends on six variables, but can be reduced in analogy with the classical 2-body problem to one that depends only on the relative separation of the two particles. Our starting point is to define the center-of-mass coordinate \vec{X} and the relative coordinate \vec{r}, respectively given by

$$
\vec{X} \equiv \frac{m_{e} \vec{x}_{e}+m_{p} \vec{x}_{p}}{m_{e}+m_{p}} \quad \vec{r} \equiv \vec{x}_{e}-\vec{x}_{p}
$$

(a) Show that

$$
\nabla_{p}^{2}=\left(\frac{m_{p}}{m_{e}+m_{p}}\right)^{2} \nabla_{\vec{X}}^{2}+\nabla_{\vec{r}}^{2}-\frac{2 m_{p}}{m_{e}+m_{p}} \frac{\partial^{2}}{\partial \vec{X} \cdot \partial \vec{r}}
$$

and determine the analogous expression for ∇_{e}^{2}. (4 points)
(b) Using your results from part (a), show that the time-independent Schrödinger equation can be written as

$$
-\frac{\hbar^{2}}{2\left(m_{e}+m_{p}\right)} \nabla_{\vec{X}}^{2} \psi-\frac{\hbar^{2}}{2 \mu} \nabla_{\vec{r}}^{2} \psi-\frac{e^{2}}{4 \pi \epsilon_{0} r} \psi=E \psi
$$

(3 points)
(c) In general, the state ψ is a function of both \vec{x}_{p} and \vec{x}_{e}, or equivalently of both \vec{X} and \vec{r}. Use separation of variables in \vec{X} and \vec{r} to split your TISE from part (b) into two separate time-independent Schrödinger equations, one involving only the center-ofmass coordinate \vec{X} and one involving only the relative coordinate \vec{r}. From this, show that the important physics of the hydrogen atom is contained in the solutions to

$$
-\frac{\hbar^{2}}{2 \mu} \nabla_{\vec{r}}^{2} \psi(\vec{r})-\frac{e^{2}}{4 \pi \epsilon_{0} r} \psi(\vec{r})=E_{\vec{r}} \psi(\vec{r})
$$

where μ is the reduced mass and $E_{\vec{r}}$ is the energy associated with the relative coordinate, $E_{\vec{r}} \leq E$. (3 points)

5 The Size of Hydrogen

(a) Find $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ for an electron in the ground state of hydrogen. Express your answer in terms of the Bohr radius. (3 points)
(b) Find $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ for an electron in a circular orbit of hydrogen with arbitrary principal quantum number n (this corresponds to $\ell=n-1$ and any of the allowed m). (3 points)
(c) Compute the RMS uncertainty $\sqrt{\left\langle r^{2}\right\rangle-\langle r\rangle^{2}}$ in r for the electron in part (b). (2 points)
(d) Using your answer from part (b), how much more volume does a hydrogen atom in the $n=100$ state occupy compared to a hydrogen atom in the ground state? (2 points)

6 Hydrogenic Atoms

A hydrogenic atom consists of a single electron orbiting a nucleus with Z protons. Determine the energies $E_{n}(Z)$, the binding energy $E_{1}(Z)$, the Bohr radius $a_{0}(Z)$, and the Rydberg constant $\mathcal{R}(Z)$ for these atoms, in terms of multiples of the corresponding answers for hydrogen. There's nothing much to calculate here $-Z$ appears multiplying the potential energy in the Hamiltonian, and the rest amounts to following through the Z dependence appropriately.

