Physics 115B, Problem Set 2

Due Friday, April 15, 5pm

Every problem is worth 10 points. Every sub-question is worth the same, unless otherwise specified.

1 Radial Momentum

In lecture, we argued for an appropriate definition of the operator corresponding to momentum in the radial direction,

$$p_r \equiv \frac{1}{2} \left(\hat{r} \cdot \vec{p} + \vec{p} \cdot \hat{r} \right) = -\frac{i\hbar}{2} \left(\frac{1}{r} \vec{r} \cdot \nabla + \nabla \cdot (\vec{r}/r) \right)$$

- (a) Compute $\hat{r} \cdot \vec{p} \vec{p} \cdot \hat{r}$. Use your result to show that $\hat{r} \cdot \vec{p}$ is not Hermitian, and hence cannot itself be identified with momentum in the radial direction.
- (b) Now using the definition of p_r given above, show that

$$p_r^2 = -\frac{\hbar^2}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right)$$

2 Algebraic Harmonic Oscillator

In lecture we noted that the 3d harmonic oscillator could be solved in spherical coordinates with algebraic techniques, where the effective radial Hamiltonian H_{ℓ} acting on a radial wavefunction R_{ℓ} could be expressed in terms of the lowering operator

$$a_{\ell} \equiv \frac{1}{\sqrt{2m\hbar\omega}} \left[ip_r - \frac{(\ell+1)\hbar}{r} + m\omega r \right]$$

(a) Show explicitly that $[a_{\ell}, a_{\ell}^{\dagger}] = \frac{(\ell+1)\hbar}{m\omega r^2} + 1$ (4 points)

- (b) Show explicitly that $H_{\ell} = \hbar \omega \left(a_{\ell}^{\dagger} a_{\ell} + (\ell + 3/2) \right)$ (3 points)
- (c) Show explicitly that a_{ℓ}^{\dagger} is a raising operator that takes a state of given total energy E_n and fixed ℓ into a state of higher total energy $E_n + \hbar \omega$ with $\ell \to \ell 1$. (3 points)

3 Algebraic Free Particle

(every sub-question worth 2 points) Consider a stationary state $\psi_{\ell,m}(r,\theta,\phi)$ of energy E and fixed ℓ, m describing a free particle of mass M in three dimensions in spherical coordinates.

(a) Starting from the time-independent Schrödinger equation satisifed by ψ_{ℓ} , show that the radial part of the wavefunction $R_{\ell}(r)$ satisfies $H_{\ell}R_{\ell} = ER_{\ell}$, where

$$H_{\ell} \equiv \frac{1}{2M} \left(p_r^2 + \frac{\ell(\ell+1)\hbar^2}{r^2} \right)$$

What is the physical interpretation of H_{ℓ} in this case?

(b) Show that you can write $H_{\ell} = a_{\ell}^{\dagger} a_{\ell}$, where now

$$a_{\ell} \equiv \frac{1}{\sqrt{2M}} \left(ip_r - \frac{(\ell+1)\hbar}{r} \right)$$

- (c) Show that $[a_{\ell}, a_{\ell}^{\dagger}] = H_{\ell+1} H_{\ell}$
- (d) Compute $[a_{\ell}, H_{\ell}]$. What is the state $a_{\ell}R_{\ell}$?
- (e) Show that (in contrast to the harmonic oscillator) for any fixed E > 0 there is no upper bound on ℓ . Interpret this physically.

4 Good Coordinates for the Hydrogen Atom

The Hamiltonian describing an electron, a proton, and their electrostatic binding energy (collectively, the hydrogen atom) in position space is

$$H = -\frac{\hbar^2}{2m_p}\nabla_p^2 - \frac{\hbar^2}{2m_e}\nabla_e^2 - \frac{e^2}{4\pi\epsilon_0|\vec{x}_e - \vec{x}_p|}$$

where the subscripts p, e respectively denote the proton and the electron, and e.g. ∇_p^2 implies the use of derivatives with respect to the components of \vec{x}_p . This depends on six variables, but can be reduced in analogy with the classical 2-body problem to one that depends only on the relative separation of the two particles. Our starting point is to define the center-of-mass coordinate \vec{X} and the relative coordinate \vec{r} , respectively given by

$$ec{X} \equiv rac{m_e ec{x}_e + m_p ec{x}_p}{m_e + m_p} \qquad ec{r} \equiv ec{x}_e - ec{x}_p$$

(a) Show that

$$\nabla_p^2 = \left(\frac{m_p}{m_e + m_p}\right)^2 \nabla_{\vec{X}}^2 + \nabla_{\vec{r}}^2 - \frac{2m_p}{m_e + m_p} \frac{\partial^2}{\partial \vec{X} \cdot \partial \vec{r}}$$

and determine the analogous expression for ∇_e^2 . (4 points)

(b) Using your results from part (a), show that the time-independent Schrödinger equation can be written as

$$-\frac{\hbar^2}{2(m_e+m_p)}\nabla_{\vec{X}}^2\psi - \frac{\hbar^2}{2\mu}\nabla_{\vec{r}}^2\psi - \frac{e^2}{4\pi\epsilon_0 r}\psi = E\psi$$

(3 points)

(c) In general, the state ψ is a function of both \vec{x}_p and \vec{x}_e , or equivalently of both \vec{X} and \vec{r} . Use separation of variables in \vec{X} and \vec{r} to split your TISE from part (b) into two separate time-independent Schrödinger equations, one involving only the center-of-mass coordinate \vec{X} and one involving only the relative coordinate \vec{r} . From this, show that the important physics of the hydrogen atom is contained in the solutions to

$$-\frac{\hbar^2}{2\mu}\nabla_{\vec{r}}^2\psi(\vec{r}\,) - \frac{e^2}{4\pi\epsilon_0 r}\psi(\vec{r}\,) = E_{\vec{r}}\,\psi(\vec{r}\,)$$

where μ is the reduced mass and $E_{\vec{r}}$ is the energy associated with the relative coordinate, $E_{\vec{r}} \leq E$. (3 points)

5 The Size of Hydrogen

- (a) Find $\langle r \rangle$ and $\langle r^2 \rangle$ for an electron in the ground state of hydrogen. Express your answer in terms of the Bohr radius. (3 points)
- (b) Find $\langle r \rangle$ and $\langle r^2 \rangle$ for an electron in a circular orbit of hydrogen with arbitrary principal quantum number n (this corresponds to $\ell = n 1$ and any of the allowed m). (3 points)
- (c) Compute the RMS uncertainty $\sqrt{\langle r^2 \rangle \langle r \rangle^2}$ in r for the electron in part (b). (2 points)
- (d) Using your answer from part (b), how much more volume does a hydrogen atom in the n = 100 state occupy compared to a hydrogen atom in the ground state? (2 points)

6 Hydrogenic Atoms

A hydrogenic atom consists of a single electron orbiting a nucleus with Z protons. Determine the energies $E_n(Z)$, the binding energy $E_1(Z)$, the Bohr radius $a_0(Z)$, and the Rydberg constant $\mathcal{R}(Z)$ for these atoms, in terms of multiples of the corresponding answers for hydrogen. There's nothing much to calculate here – Z appears multiplying the potential energy in the Hamiltonian, and the rest amounts to following through the Z dependence appropriately.