Physics 115B, Problem Set 1
 Due Friday, April 8, 5pm

Upload to Gradescope (code V8VERZ).
To help out with grading, please circle your final answers.

1 The infinite cubical well (10 points)

Consider a particle of mass m in a 3d infinite "cubical well" of length a to a side, corresponding to the potential

$$
V(x, y, z)= \begin{cases}0 & x, y, z \text { all between } 0 \text { and } a \\ \infty & \text { otherwise }\end{cases}
$$

You can think of this as a particle in a box with infinitely thick walls.
(a) Use separation of variables in Cartesian coordinates to find the stationary states and the corresponding energies. (7 points).
(b) Call the distinct energies $E_{1}, E_{2}, E_{3}, \ldots$ in order of increasing energy. Find $E_{1}, E_{2}, E_{3}, E_{4}, E_{5}$, and E_{6} and determine their degeneracies. (3 points).

2 The 3d harmonic oscillator (10 points)

Consider a particle of mass m in a three-dimensional harmonic oscillator potential, corresponding to

$$
V(r)=\frac{1}{2} m \omega^{2} r^{2}
$$

(a) Using separation of variables in Cartesian coordinates, show that this factorizes into a sum of three one-dimensional harmonic oscillators, and use your knowledge of the properties of the 1d harmonic oscillator to determine the allowed energies. (6 points).
(b) Determine the degeneracy $d(n)$ (i.e., the number of states with the same energy) of the nth energy eigenvalue E_{n}. (2 points).
(c) As you hopefully found in part (b), the ground state $\psi_{0}(x, y, z)$ is nondegenerate. However, the first excited energy eigenvalue E_{1} is threefold degenerate, with eigenstates

$$
\begin{aligned}
& \psi_{1,0,0}(x, y, z)=\tilde{\psi}_{1}(x) \tilde{\psi}_{0}(y) \tilde{\psi}_{0}(z) \\
& \psi_{0,1,0}(x, y, z)=\tilde{\psi}_{0}(x) \tilde{\psi}_{1}(y) \tilde{\psi}_{0}(z) \\
& \psi_{0,0,1}(x, y, z)=\tilde{\psi}_{0}(x) \tilde{\psi}_{0}(y) \tilde{\psi}_{1}(z)
\end{aligned}
$$

where $\tilde{\psi}_{i}$ denotes an eigenstate of the 1d harmonic oscillator. Are any of the linear combinations $\frac{1}{\sqrt{3}}\left(\psi_{1,0,0}+\psi_{0,1,0}+\psi_{0,0,1}\right), \frac{1}{\sqrt{2}}\left(\psi_{0}+\psi_{0,1,0}\right)$, or $\frac{1}{\sqrt{2}}\left(\psi_{1,0,0}+i \psi_{0,0,1}\right)$ energy eigenstates? In each case, why or why not? (2 points).

3 The anisotropic 3d harmonic oscillator (10 points)

Consider instead an anisotropic oscillator potential

$$
V(x, y, z)=\frac{1}{2} m \omega_{x}^{2} x^{2}+\frac{1}{2} m \omega_{y}^{2} y^{2}+\frac{1}{2} m \omega_{z}^{2} z^{2}
$$

where $\omega_{x} \neq \omega_{y} \neq \omega_{z}$. Using the same approach as in Problem (1), find the allowed energies. (8 points).
What happened to the degeneracies? Why? (2 points).

4 The free particle (10 points)

Consider a free particle in three dimensions. This may be viewed as a special case of rotationally invariant potentials. As such, write down the time-independent Schrödinger equation for a free particle in spherical coordinates. Solve this to find the wavefunction of a particle with energy eigenvalue E for the special case of $\ell=0$, i.e. when the separation constant between r and θ, ϕ vanishes.

5 Associated Legendre Polynomials (10 points)

Legendre polynomials $P_{\ell}(z)$ are the solutions to the ordinary Legendre equation

$$
\frac{d}{d z}\left[\left(1-z^{2}\right) \frac{d P_{\ell}}{d z}\right]+\ell(\ell+1) P_{\ell}(z)=0
$$

Show that the associated Legendre polynomials $P_{\ell}^{m}(z)$ given by

$$
P_{\ell}^{m}(z)=(-1)^{m}\left(1-z^{2}\right)^{|m| / 2}\left(\frac{d}{d z}\right)^{|m|} P_{\ell}(z)
$$

are the solution of the associated Legendre equation

$$
\frac{d}{d z}\left[\left(1-z^{2}\right) \frac{d P_{\ell}^{m}}{d z}\right]+\left[\ell(\ell+1)-\frac{m^{2}}{1-z^{2}}\right] P_{\ell}^{m}(z)=0
$$

Hint: define $F(z)=\left(1-z^{2}\right)^{-m / 2} P_{\ell}^{m}(z)$ for $m>0$ and rewrite the equation above in terms of $F(z)$. (5 points).
Next, take the ordinary Legendre equation for $P_{\ell}(z)$ and differentiate it m times with respect to z. (3 points for correct differentiation, 2 points for drawing conclusions). Remember Leibniz rule for differentiating a product of functions n times.

$$
(u v)^{(n)}=\sum_{i=0}^{n}\binom{n}{i} u^{(n-i)} v^{(i)}
$$

