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Up until this point, we have (almost always!) discussed all of the states in quan-
tum mechanics as functions of position – wavefunctions ψ(x). Even when we are
computing eigenvectors of other operators that do not commute with position, we
express them as functions of position.

But we have also seen that we can describe the same objects as functions of other
variables. For example, we have seen that a Fourier transform can take us from wave-
functions in position space to wavefunctions in momentum space. This transform
also changes the action of operators – in position space we have x̂ = x, p̂ = −i~ d

dx
,

while in momentum space we have p̂ = p, x̂ = i~ d
dp

.

And we have seen that writing states as functions of a continuous coordinate is
not even always strictly necessary. For example, in studying the harmonic oscillator,
we discuss a ground state ψ0 that satisfies a−ψ0 = 0 and therefore also

~ω(a+a− + 1/2)ψ0 =
1

2
~ωψ0

We learned this without ever writing ψ0 as a function of x. Indeed, we could construct
all the eigenvectors of Ĥ for the harmonic oscillator without ever talking about
functions of x or of k or of anything else:

ψn =
1√
n!
an+ψ0

More generally, we can talk about eigenfunctions of an operator without ever
writing them out as functions of x or k. Eigenfunctions of Ĥ are eigenfunctions of Ĥ
whether we write them as a function of x or of k. Clearly, expressing states in terms
of functions of x or k or anything else just amounts to a choice of some representation
of the states, some way of writing them. We can change our choice of representations
without changing the essential properties of the state.
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The idea that there is some vector that we can choose to represent in different
ways is familiar from finite-dimensional vector spaces. If we have a vector ~a, we can
choose to represent it in a specific basis:

~a = a1~e1 + a2~e2 + . . . an~en =


a1
a2
...
an


But if we wanted to change basis, to say, some basis vectors e′1, . . . e

′
n, we would have

a different choice of representation for ~a:

~a = a′1~e1
′ + a′2~e2

′ + . . . a′n~en
′ =


a′1
a′2
...
a′n


Following in the footsteps of Dirac, we can do the same thing in our Hilbert space:

label our states with an abstract label, and then compute them with respect to a
specific variable if we want to. We call the abstract vector |a〉 a “ket” (which will
make sense in a moment). In this notation, for example, the eigenvectors of x̂ are
denoted |x〉, such that

x̂|x〉 = x|x〉

where |x〉 is the eigenvector, x̂ is the operator acting on it, and x is the eigenvalue.

Now we are accustomed to writing an inner product of two vectors |a〉, |b〉 as

〈b|a〉

If we think of the ket |a〉 as a vector, we can think of 〈b| as an object in its own right.
We call it a “bra”, since 〈b|a〉 ∼ “bracket”, so 〈b| ∼ “bra”, |a〉 ∼ “ket”.

What is 〈b|? Properly speaking, it’s not a vector. But we know what it does
when it acts on a vector: 〈b|a〉 is a complex number. If |a〉 is a vector in a vector
space V , we say that 〈b| is an element of the dual space of linear functionals on V .
Linear functionals F are just things that assign a scalar F (ψ) to every vector ψ, such
that F (aψ+ bφ) = aF (ψ) + bF (φ) for scalars a, b and vectors ψ, φ. The set of linear
functionals may itself be thought of as forming a vector space V ′ of its own if we
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define the sum of two linear functionals as (F1 + F2)(ψ) = F1(ψ) + F2(ψ).

But that’s exactly the property of the bras 〈b|: if I act on |a〉 with 〈b|, I can
either think of this as meaning “take the inner product of two vectors |a〉 and |b〉”,
or I can think of it as meaning “〈b| is a linear functional that takes the vector |a〉 to
the complex number 〈b|a〉.”

You might worry that these things are inequivalent – maybe not every inner
product of two vectors in a Hilbert space can be written as a linear functional acting
on a vector. But there is a beautiful theorem, called Riesz’s Theorem, which says
there is a one-to-one correspondence between linear functionals F in V ′ and vectors
f in V , such that all linear functionals have the form

F (ψ) = 〈f |ψ〉

where f is a fixed vector associated with F , and ψ is any old vector in V . For our
purposes, the vector space V and the dual space V ′ are isomorphic.

If you are feeling lost, as always, it’s a good idea to think about finite-dimensional
examples. If we represent a vector as a column of numbers,

|a〉 =


a1
a2
...
an


we know we can write the dot product of |a〉 with another vector |b〉 as multiplication
of a row vector and a column vector,

〈b|a〉 =
(
b∗1 b∗2 . . . b∗n

)


a1
a2
...
an


so we can identify the “bra” 〈b| as

〈b| =
(
b∗1 b∗2 . . . b∗n

)
= (|b〉)†

i.e., the hermitian conjugate (complex conjugate & transpose) of the vector |b〉.
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Formally speaking, in an infinite-dimensional vector space the hermitian conju-
gate is only well-defined on operators, but heuristically speaking you can still think
of bras in the dual space as being related to kets in the vector space by hermitian
conjugation. Clearly there is a bra for every ket, so we can think of the vector space
and dual space as being isomorphic.

Now that we have given separate identities to bras and kets, we can also usefully
construct another object called the outer product:

|a〉〈b|

What is this? Well, it’s an operator. That is to say, if we have some other vector
|c〉, then we can compose the outer product with the vector to get

|a〉〈b|c〉 = 〈b|c〉|a〉

i.e., the outer product acting on a vector is another vector, which is what we call an
operator.

Again, it helps to think of finite-dimensional cases. If we multiply N -component
column vectors by N -component row vectors, we get N ×N matrices:

|a〉〈b| =


a1
a2
...
an

( b∗1 b∗2 . . . b∗n
)

=


a1b
∗
1 a1b2∗ . . . a1b

∗
n

a2b
∗
1 . . . . . . a2b

∗
n

...
. . . . . .

...
anb
∗
1 . . . . . . anb

∗
n


Now what does this buy us? Consider now a state |Ψ〉 in our Hilbert space. In

general, we are interested in the properties of this state with respect to some operator
Q̂. In general we don’t know what Q̂ does to |Ψ〉, so to understand it better, we
want to write it as a linear combination of eigenstates of Q̂ – call them |ψn〉. We’ve
done this all the time; in bra-ket notation, it’s just

|Ψ〉 =
∑
n

cn|ψn〉 =
∑
n

〈ψn|Ψ〉|ψn〉 =
∑
n

|ψn〉〈ψn|Ψ〉

where in the middle step we use Fourier’s trick, and in the last step I have just used
the fact that 〈ψn|Ψ〉 is just a number. The fact that I can write any |Ψ〉 this way is
a statement that the |ψn〉 are complete.
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But now we see that we can think of |Ψ〉 as a vector and |ψn〉〈ψn| as operators.
For this to hold, it must be the case that we can identify∑

n

|ψn〉〈ψn| = 1

This is an equivalent way (at the level of operators made out of bras and kets) of
saying that the ψn form a complete basis; this is just a completeness relation. This
was the form appropriate for a discrete set of eigenfunctions; if instead we want to
use a continuous set of eigenfunctions, it’s going to be

|Ψ〉 =

∫
c(n)|ψ(n)〉 dn =

∫
|ψ(n)〉〈ψ(n)|Ψ〉 dn

and completeness amounts to ∫
|ψ(n)〉〈ψ(n)| dn = 1

Now for the question you are undoubtedly asking yourself at this point: What is
the relationship between the abstract state vector |Ψ〉 and the position-space wave-
function Ψ(x)? The answer: the position-space wavefunction is the inner product of
|Ψ〉 with definite-position states |x〉:

Ψ(x) ≡ 〈x|Ψ〉

You can see that this is a sensible relationship by first inserting a complete set of
position states,

|Ψ〉 =

∫ ∞
−∞
|x′〉〈x′|Ψ〉dx′

Then if I dot in 〈x| on both sides,

〈x|Ψ〉 =

∫ ∞
−∞
〈x|x′〉〈x′|Ψ〉dx′ =

∫ ∞
−∞

δ(x− x′)〈x′|Ψ〉dx′

using Dirac orthogonality of the eigenfunctions of x̂. But this is just the statement
that

Ψ(x) =

∫
δ(x− x′)Ψ(x′)dx′

That is what the position-space wavefunction is – the state |Ψ〉 in terms of the eigen-
functions of the x̂ operator.
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The following added by CC.
A slightly different way of seeing what is going on. Write

|Ψ〉 =

∫ ∞
−∞

c(x′)|x′〉dx′

. Then |c(x′)|2 is the probability of finding the particle between x′ and x′ + dx′, i.e.,
c(x′) is what we called the wavefunction, c(x′) = Ψ(x′). Now dot in 〈x| on both
sides:

〈x|Ψ〉 =

∫ ∞
−∞

c(x′)〈x|x′〉dx′ =
∫ ∞
−∞

c(x′)δ(x− x′)dx′ = c(x) = Ψ(x)

. Also, the expectation value of x is:

〈x〉 = 〈Ψ|x̂|Ψ〉

inserting a complete set of states “in the middle”:

〈x〉 =

∫ ∞
−∞
〈Ψ|x̂|x′〉〈x′|Ψ〉dx′

since x̂|x′〉 = x′|x′〉 :

〈x〉 =

∫ ∞
−∞

x′〈Ψ|x′〉〈x′|Ψ〉dx′ =
∫ ∞
−∞

x′Ψ∗(x′)Ψ(x′)dx′ =

∫ ∞
−∞

x′|Ψ(x′)|2dx′

which is what we expected
End of addition by CC.

What about the momentum-space wavefunction? Your natural guess is the cor-
rect one: the momentum-space wavefunction is

Φ(k) = 〈k|Ψ〉

Again, this makes sense if we use the completeness relation for eigenstates of p̂:

|Ψ〉 =

∫ ∞
−∞
|k′〉〈k′|Ψ〉dk′

and if I dot in 〈k| on both sides,

〈k|Ψ〉 =

∫ ∞
−∞

δ(k − k′)〈k′|Ψ〉dk′
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What about the inner product of two states? Consider the norm-squared of an
abstract state |Ψ〉 and insert a complete set of position eigenvectors,

〈Ψ|Ψ〉 =

∫
〈Ψ|x〉〈x|Ψ〉dx =

∫
Ψ(x)∗Ψ(x)dx

The LHS is just the abstract inner product for two vectors, but the RHS we recognize
as our usual L2 norm on wavefunctions in position space. The same goes for writing
the inner product in momentum space,

〈Ψ|Ψ〉 =

∫
〈Ψ|k〉〈k|Ψ〉dk =

∫
Φ(k)∗Φ(k)dk
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