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Notes on Statistics for Physicists, Revised
Jay Orear
Preface

These notes are based on a series of lectures given a the Radiation Laboratory in the
summer of 1958. | wish to make dear my lack of familiarity with the matheméticd literature
and the corresponding lack of mathematicd rigor in this presentation. The primary source for
the basic materid and approach presented here was Enrico Fermi. My firgt introduction to
much of the material here was in a series of discussons with Enrico Fermi, Frank Solmitz
and George Backus at the University of Chicago in the autumn of 1953. | am grateful to Dr.
Frank Solmitz for many helpful discussons and | have drawn heavily from his report "Notes
on the Least Squares and Maximum Likelihood MethodsTll. The generd presentation will
be to sudy the Gaussan digtribution, binomid distribution, Poisson didribution, and least-
squares method in that order as applications of the maximum-likelihood method.
August 13, 1958

Preface to Revised Edition

Lawrence Radiation Laboratory has granred permission to reproduce the originad UCRL-
8417. This revised verdon conggts of the origind verson with corrections and clarifications
including some new topics. Three completely new appendices have been added.

July 28, 1982

[1] Frank Solmitz, "Notes on the Least Squares and Maximum Likelihood Methods'
Indtitute for Nuclear Studies Report, University of Chicago.
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1 - Direct Probability

Books have been written on the "definition” of probability. We shdl merely note two
properties. (a) Satistical independence (events must be completely unrelated), and (b) the
law of large numbers. Thissaysthat if p; is the probakility of getting an event of Class 1 and
we observethat N, outof N eventsarein Class 1, then we have:

lim é_ng—p
- M
Ne¥ &N H

DD

A common example of direct probability in physicsis that in which one has exact knowledge
of a find-gtate wave function (or probability dendty). One such case is tha in which we
know in advance the angular didribution f(x), where x = cosg, of a certain scattering
experiment. In this example one can predict with certainty that the number of particles that
leave at an angle x, inaninterva Dx; isN f(x1) Dx;, where N, the total number of scaitered

particles, isavery large number. Note that the function f(x) is normalized to unity:

1

of (x)dx=1
-1

As physcds, we cdl such a function a "didribution function”. Mahemdicians cdl it a
"probability dengty function”. Note that an dement of probability, dp, is:

dp = f(x) dx

2 - Inverse Probability

The more common problem facing a physicist is that he wishes to determine the fina-dtate
wave function from experimenta measurements. For example, consder the decay of a spin

% particle, the muon, which does not conserve parity. Because of angular momentum

consarvation, we have the a priori knowledge that:

1+ax

="

However, the numerica vaue of a is some universd physical congtant yet to be determined.
We shdl dways use the subscript zero to denote the true physica value of the parameter
under question. It is the job of the physicigt to determine a,. Usudly the physcist does an
experiment and quotes aresult a = a* = Da. The mgor portion of this report is devoted to
the questions "What do we mean by a* and Da ?' and "What is the best way to caculate
a* and Da ?'. These are questions of extreme importance to dl phydcids.

-2



CLNS 82/511

Crudely speaking, Da is the standard deviationl2l, and what the physicist usualy means is
that the "probability” of finding:

(@* -Da) < agp< (a* + Da) is68.3%

(the area under a Gaussian curve out to one standard deviation). The use of the word
"probability” in the previous sentence would shock a mathematician. He would say the
probability of having:

(a* -Da) < agp< (a* + Da) iseitherOor 1

The kind of probability the phydcig is talking about here is cdled inverse probability, in
contrast to the direct probability used by the mathematician. Most physicists use the same
word, probability, for the two completely different concepts: direct probability and inverse
probability. In the remainder of this report we will conform to this doppy physicist-usage of
the word "probability”.

3- Likdihood Ratios

Suppose it is known that either Hypothesis A or Hypothesis B must be true. And it is aso
known that if A istrue the experimenta distribution of the varisblex must be fa(x), and if B
IS true the digtribution is fg(x). For example, if Hypothess A is that the K meson has spin
zero, and Hypothesis B that it has spin 1, then it is "known" that fa(X) = 1 and fg(x) = 2,
where x isthe kinetic energy of the decay p~ divided by its maximum vaue for the decay
mode K"® p~ +2p~.

If A is true, then the joint probability for getting a particular result of N events of vaues
X5 Xor e Xy IS

P\
dpa = O fa(x) dx
i=1

Thelikeihood retio R is

[2] In 1958 it was common to use probable error rather than standard deviation. Also some
physicigs ddiberately multiply their esimated standard deviations by a "safety” factor (such
asp). Such practices are confusing to other physicists who in the course of their work must
combine, compare, interpret, or manipulate experimenta results. By 1980 most of these
mideading practices had been discontinued.
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A
O fa(x)
R — (N)fA(XI - i;;l (1)
U RR¢)

N—r

Thisis the probakility that the particular experimenta result of N events turns out the way it
did, assuming A is true, divided by the probability that the experiment turns out the way it
did, assuming B is true. The foregoing lengthy sentence is a correct statement using direct
probability. Physicists have a shorter way of saying it by using inverse probability. They say
Eq. (1) is the betting odds of A againgt B. The formdism of inverse probability assgns
inverse probabilities whose ratio is the likdihood ratio in the case in which there exist no a
priori probabilities favoring A or B3l. All the remaining materid in this report is based on this
basic principle done. The modifications applied when a priori knowledge exids are
discussed in Section 10.

An important job of a physcig planning new experiments is to estimate beforehand how
many events he will need to "prove" a hypothesis. Suppose that forthe K* ® p~ +2p “one
wishes to establish betting odds of 104 to 1 against spin 1. How many events will be needed
for this ? This problem and the generd procedure involved are discussed in Appendix |I:
Prediction of Likdlihood Ratios.

4 - Maximum-L ikelihood M ethod

The preceding section was devoted to the case in which one had a discrete set of
hypotheses among which to choose. It is more common in physics to have an infinite set of
hypotheses; i. e, a parameter that is a continuous variable. For example, in the me decay
digribution:

f(a;x) = “7"”(

the possible values for a, belong to a continuous rather than a discrete set. In this case, as
before, we invoke the same basc principle which says the relaive probability of any two
different values of a is the ratio of the probabilities of getting our particular experimenta
results, Xj , assuming first one and then the other value of a is true. This probability function

of a iscdled thelikelihood function L(a).

L(a)=€) F(a;x) )

[31 An equivaent statement is that in the inverse probability approach (dso caled Bayesian
gpproach) one isimplicitly assuming that the “apriori” probabilities are equd.
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The likdihood function, L(a), is the joint probability dendty of getting a particular
experimental result, x; X,; ... X, auming f(a;X) is the true normalized distribution
function:

of (@x)dx=1

The relative probabilities of a can be displayed asaplot of L(a) versusa.

The most probable vaue of a is caled the maximumHikeihood solution a.

The RMS (root-mean-square) spread of a about a* is a conventiond measure of the
accuracy of the determination a = a*. We shdl cdl this Da.

1
(Ja- a*)’Ldau?
U

(‘j_da H

©)

€
Da= é
e
e

In generd the likelihood function will be close to Gaussan (it can be shown to gpproach a
Gaussan digribution as N --> ¥) and will look smilar to Fig. 1(b).

L(a) Fig. 1(a) L(a) Fig. 1(b) Good Statistics
Poor Statistics Da
I |
0 a* a 0 a* a

Fig. 1. Two examples of likeihood functions L(a)

Fig. 1(a) represents what is called a case of poor statistics. In such a casg, it is better to
present aplot of L(a) rather than merely quoting a* and Da. Straightforward procedures for
obtaining Da are presented in Sections 6 and 7.

A confirmation of this inverse-probability approach is the Maximum-Likelihood Theorem,
which is proved in Cramer[4] by use of direct probability. The theorem statesthat in the limit
of large N, a* --> a ; and furthermore, there is no other method of estimation that is more
accurate.

In the genera case in which there are M parameters, a,; a,; ..., a, to be determined,

the procedure for obtaining the maximum-likelihood solution is to solve the M smultaneous
equations.
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w

=0 where w=logL(a,;; a,;
fla;

. ay) 4

g=g*

5 - Gaussian Digributions

As afirg application of the maximumt-likelihood method, we consder the example of the
measurement of a physicad parameter a, , where x is the result of a particular type of
measurement that is known to have ameasuring error s. Thenif X is Gaussian-distributed 4],
the digribution function is

1 é
f(ao;x) = mexp & —F2
' é

For a set of N measurements X;, each with its own measurement error sj, the likdihood
functionis

A1 é (x-a)?u
L@ = O——epe ———
i=1 2p5, e 2si2 u
then:
w= 1 c’)\l é(xl - a)2 l;l+COHSt
2|—lé 28i2 H
N _ 2
w=- 1§ (% 2) +const
2 i=1 Zsi
Tw_ & (x-a)? ©w_ & 1
- = , =- 5
a ia=1 23.2 la® ia=125i2 ®)
N N
; a
éiz - é—ZZO
i=1S i=1S

[41 A derivaion of the Gaussian digtribution and its relaion to the binomia and Poisson
digributionsis given in Chapter |1 of R. B. Lindsay, "Physicd Statigtics', Wiley, New Y ork,
1941, or E. Segre, "Nuclel and Particles’
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7 o
(7)) |_><
N

(6)

Qo
|
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(%2]

is the maximum-likelihood solution. Note that the measurements must be weighted according
to the inverse squares of their errors.. When dl the measuring errors are the same we have:

N
[o)
a x

=1

N

a = which isthe conventiond determination of the mean vdue.

Next we consder the accuracy of this determination.

6 - Maximum-L ikelihood Error, One Parameter

It can be shown that for large N L(a) approaches a Gaussan didribution. To this
gpproximation (actualy the above example is dways Gaussan in a), we have:

L(@) 1 exp % %(a- a*)zg

where L isthe RMS spread of a about a*:

Jh

w= - g(a- a*) 2+ congt.

W_ ha-at)

fa

Since Da s defined in Eq, (3) is — , we have:

h

Maximum-likelihood Error (7)




CLNS 82/511

It is dso proven in Cramerl® That no method of estimation can give an error smaler than
that of Eq. (7) (or its dternate form Eqg. (8)). Eq. (7) isindeed very powerful and important.
Let us now apply this formula to determine the error associated with a* (Eq. (6)). We
differentiate Eq. (5) with repect to a. The answer is.

2

]

w
fla®

,moz

1
s?

1

Usng thisin Eq. (7) gives

N
Da= /é Siz Law of Combination of Errors
=19

This formula is commonly known as the "Law of Combination of Errors' and refers to
repested measurements of the same quantity which are Gaussan-distributed with "errors’
Si.

In many actud problems, neither a* nor Da may be found andyticadly. In such cases the
curve L(a) can be found numericdly by trying severa vauesof a and using Eq.(2) to get the
corresponding vaues of L(a). The complete function is then obtained by using a smooth

2

curve through the points. If L(a) is Gaussanlike, 1111—\/2Vis the same everywhere. If nat, it is
a

best to use the average:

_ Tw

o dW)Lda

fa? (Lda

A plaughility argument for using the above average goes as follows, if the tals of L(a) drop
T°w
a2

off more dowly than Gaussan tals, isgmdler than:

1°w
2
ﬂa a:a‘k

Thus, use of the average second derivative gives the required larger errors,
Note that use of Eq. (7) for Da depends on having a particular experimentd result before the
error can be determined. However, it is often important in the design of experiments to be

[51 H. Cramer, “Mathematica Methods of Statigtics’,
Princeton University Press, 1946.
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able to edimate in advance how many data will be needed in order to obtain a given
accuracy. We shdl now deveop an dternate formula for the maximum-likelihood error,
which depends only on knowledge of f(a;x). Under these circumstances we wish to

2
determine ﬂ_vzv averaged over many repeated experiments conssting of N events each. For
a

one event we have:

T'w_ J*log( f)
= fd
ﬂaZ 0 ﬂaZ X

for N events;

1w J2log( f)
——=N §—=5—fd
fla? fla? X

This can be put in the form of afirg derivative as follows.

Tl f)_ T 15, 1
Ta® ‘Hg ag 12&Map

2

J l@(f)fdxz_olé[fodq.‘ﬂfdx

fa® e‘ﬂaﬂ a

Thelast integral vanishesif one integrates before the differentiation because () (a; X)dx = 1.

Thus

w1
=-N = dx

fla? Ot $tap

and Eq. (7) leads tol6l:

(6] Example 1: Assume in the me decay didribution function, f(a;x) = 1+Tax that

a, =- é How many me decays are needed to establish a to a 1 % accuracy (i. e,

2 -100) 7
Da

ff_x. ol _f9 X* 1 g lta. ot
fa 2’_?_ ap 92(1+ax) 2a3§091-a H

('D"O&
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1

2

Da= i $s1 Eﬂf 0 dxu Maximum-likelihood Error (8
»\/_@ feﬂaﬂ g

See Example 1.

7 - Maximum-Likdihood Errors, M-Parameters, Corrdated Errors

When M parameters are to be determined from a single experiment containing N events, the
error formulas of the preceding section are gpplicable only in the rare case in which the
errors are uncorrelated.

Errors are uncorrelated only for: (a - a,*)(a; - @;*)= Ofor dl cassswithi ® j.

For the general case we Taylor-expand w(a) about a*:

W) = w(at) + § W

a—lﬂ a

M M

o O
_aa ab ab t..
a a=1lb=

where bj= g -a* and:

T°w

H.. - _
1T Tata

Covariance Matrix 9

ai:ai*aj:aj*

The second term of the expansion vanishes because %T—W = 0 arethe equations for a,*:

a

logL(a)=w(a’)- —aaHabb b, +.

albl

Da =
~ 1
. 3
Notethat lim_ __,(Da) = \/%
For a=-- 1, Da = 28
N
For thisproblem  Da = ﬁ; N = 2.52 x 10° events

-10 -
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Neglecting the higher-order terms, we have:

L(a)= Ce(pg _a a Hap ba bb x

albl 7]

(an M-dimensond Gaussan surface). As before, our error formulas depend on the
goproximation that L(a) is Gaussanlikeintheregion g » a*. As mentioned in Section 4, if
the Statistics are so poor that this is a poor gpproximation, then one should merely present a
plot of L(a).

According to Eq. (9), H isasymmetric matrix. Let U be the unitary matrix that diagondizes
H:

h O 0
0 h 0

UeH-U1l= 0 02 o|7h where u'=u? (10)
0 0 h,

Letb = (b,b,...;b,) and g= b« U™ Thedement of probability in the b-space

g-U)H(g: u)" Y

d'p=Cexp q

I\)||—‘

¢
&

Since |U| = 1isthe Jacobian relating the volume dements d“'b and d“g, we have:

d"p= Cexp ée 1 hg?2dg
2 4]

Now that the genera M-dimensond Gaussan surface has been put in the form of the
product of independent one-dimensional Gaussians we havel7l:

[71 Proof: We must evauate the following integrd:
g . LU
9.95 C(}Jagbexp sahgg
a

which can be trandated into:

- . 1 . . & 1
9a9b =CO§oexp<;- —hg| —dg i(’g 9<pg- Ehaga;dgagmb G‘ng Eh +Jp _dgb_
Yy - ¥

itab
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=L n-u)?)

According to Eq. (10), H= U1« he U, sothat thefind result is

T°w
To,Ta,

(a -a*)(a - a%) = (H)jj where Hij=-

Maximum-likdihood Errors, M parameters |

Averaged over repeated experiments:

— .1 eff oeegf O
Hi=N : =d 11
B Y YN -

¥ .. ¥ -

: .. el 0 , - el ,0 .

Snce -—-hg°%dg. =1fori! ab, and .expc- —h.g7dg. =0for j = a,b,
_gf’(p‘é > iJi ﬂg. _93] pg 5 ,9,@9, J

theresultisg,g, =0 fora® b.

If a= b then:
~a& el .5 &, @l ,5, 0
aa:C C -_hi |_d| \ae( '_ha a_:d ai
9.9 igbg_?pgzgggggg P 5M0a 2d0. <
¥ ..
. 1 0 1 1
Andsince ¢p? exp =h,g? g, = —, ==
_Eﬂa pg > agazga h, 9.9. h
Therefore 9.9, =dh;*

-12 -
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An example of use of the above quoted formulasis given inl8l.

(8] Example 2 Assume that the ranges of monoenergetic particles are Gaussian-distributed
with mean range a; and draggling coefficient a, (the standard deviation). N particles having
ranges X;; X, ;...; Xy areobserved. Find a,* , a,* and their errors.

Then:
1 @ (x-a)d
L —Uu
(a,8,)= _C_?@J— 2]
18 (x-a)
we- 2303 e Niog2p)
2 2a2
& X -
w_4 Zai)
fa, = &
w_128. .2 N
ﬂaz a;’izl(' al) a,

Zex0;

The reader may remember a standard-deviation formulain which N isreplacedby (N - 1):

o = /é (x-a)
* V& N-1

Thisis because in this case the most probable vaue, a,*, and the mean a,, do not occur at

the same place. Mean vaues of such quantities are studied in Section 16. The matrix H is
obtained by evauating the following quantities at a;* and a*

T°w N R 39 ) 12w 2 N
= — = - +—+ ; = — - =0
wa g a QAT e Tk a)
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A rulefor cdeulding theinverse matrix H * is:

ij"minor of H

Hij = (1" .
determinan t of H

If we use the dternate notation V for the error matrix H ™', then whenever H appears, it
must be replaced with V "*; i.e, the likdihood function is

I-O

L(a):@(pg? %B\—/lET (lla)

Q

We note that the error of the mean is is where s =a, isthe standard deeviation. The

JN
s
V2N

error on the determination of s is

Correated Errors

The marix V;; = (a - a*)(@,; - a;*) is defined as the Error Matrix (aso cdled the
Covariance Matrix of a). In Eq. (11) we have shownthat V = H * where:

Whmalzal*,
e_N 0 lﬁl §a2*2 0 l;l
ga *2 l:l u
H= &2 N U and H=¢ N 2U
€0 y é 24
g a,**f é 2N §

According to Eq. (11), the errors on a; and a, are the square roots of the diagona elements
of the error matrix H™:

Dalzjzﬁand Da, :j;_N

where the last is sometimes cdled the "error of the error”.

-14-
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2
w
H|j =- T
fla, T2,
Thediagond dementsof V  arethe variances of thea's. If dl the off-diagona eements are

zero, the errorsin a are uncorrelated as in Example 2. In this case contours of constant w
plotted in (@, a,) space would be dlipses as shown in Fig. 2a The errors in a; and a,

would be the semi-mgjor axes of the contour dlipse where w has dropped by % unit from

its maximum-likelihood vaue. Only in the case of uncorrdated errors is the RMS error
1

Da; =H i}z and then there is no need to perform a matrix inverson.

@ (b)

Dau = ((H")u)"?

w*

S ——— R :
DaZI "

Dau:
0 ar* a 0 ar* a

-1/2

a*

>
>

\4

Fig. 2. Contours of congtant w asafunction of a; and a,. Maximum likdihood solution is a
w=w* . Errorsin a; and a, are obtained from ellipse where w= (W* - }/2)

(& Uncorrelated errors

(b) Correlated errors. In either case Da’ =V,, = (H . 1)11 and Da; =V,, = (H '1)22. Note that

it would be a serious mistake to use the dlipse “hdfwidth” rather than the extremum for
Da.

In the more common stuation there will be one or more off-diagond dementsto H and
the errors are correlated (V  has off-diagona eements). In this case (Fig. 2b) the contour

1
dlipses areindined to the a;, a, axes. The RMS spread is Da, =V,? which can be shown to
be the extreme limit of the élipse projected on the a; axis (the dlipse “hdfwidth” axis is

1

Hl_f which is smaler). In cases where EQ. (11) cannot be evauated andyticdly, the a*’s
can be found numericdly and the errorsin a can be found by plotting the elipsoid where w

IS % unit lessthan w*. The extremums of this dlipsoid are the RMS errorsin the @'s. One

should dlow dl the g to change fredy and search for the maximum change in & which
1
2 .

makes w=w'" - %.Thismaximumchmgein a istheerrorin g andis Vv,

8 - Propagation of Errors: the Error Matrix

-15-
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Consider the case in which asingle physical quantity, y, is some function of the a's: y=y (a,,
., a,) . The"best" vduefory isthen y* =y (g*). For exampley could be the path radius
of an dectron cirding in a uniform magnetic fieldwhere the measured quantities are a, =t ,
the period of revolution, and a, =V, the eectron veocity. Our god is to find the error in y

giventheerorin a.
Tofirg order in (g - a*) we have:

& Ty
y-y* = ;’:11%(61a a,)

Ty Ty
v- v)? _aalﬁal‘ﬂaa‘ﬂ (a.- a,)(@,- &)

fy Ty

H™), (12
o100 A, ﬂﬁ D

(By)rms = \/

A wdl known specid case of Eq. (12), which holds only when the variables are completey
uncorrelated, is:

(OY)rms = \/ A gﬂz

In the example of orbit radiusintermsof t and v this becomes:

ﬁRO 2 ad[RO v? 2+i 2
or= B89 o0 RS 01 = [V (0 2 o)

in the case of uncorrelated errors. However, if DtDv is non-zero as one might expect, then
Eq. (12) gives

V2 t? 2V Geet
DR= Dt )? Dv)? + 28V e G5y
J%Z()+%2() TPy

It is a common problem to be interested in M physica parameters y,, ..., Y,, which are
known functions of the ;. If the error matrix H-1, of the a; is known, then we have:

M ﬂyl ﬂyJ

-1
a=1b=1 18, Ta, e 13

(yi_y*i)(yj y )—

- 16 -
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T, ——cannot be obtained directly, but the %are eadly

a i

In some such cases the

obtainablel®l. Then:

M: (\]_l)ia, WhereJij = B
fla, fy;

9 - Sysematic Errors

"Sysematic effects’ is a genera caegory which includes effects such as background,
sdection bias, scanning efficiency, energy resolution, angle resolution, variation of counter
efficiency with beam pogtion and energy, dead time, etc. The uncertainty in the estimation of
such asystematic effect is caled a"systematic error”. Often such systematic effects and their
errors are estimated by separate experiments designed for that specific purpose. In generd
the maximum-likelihood method can be used in such an experiment to determine the
sysemdtic effect and its error. Then the systematic effect and its error are folded into the

[91 Example 3 Suppose one wishes to use radius and acceleration to specify the circular
orbit of an dectron in auniform magnetic fidd; i. e, y; = r and y, = a. Suppose the origina
measured quantitiessare a; =t = (10 £ 1) nsand a, = v = (100 % 2) knV/sAlso snce the
velocity measurement depended on the time measurement, there was a correlated error
DtDv = 1.5x 10%m. findr, Dr, a, Da.

Since r :% =0.159 m and a—zl% = 6.28 x 10" m/'s’ we have:

alaZ aZ 1-[yl aZ 1-B/l al
= =2 Then 2% W _4
T > a fa, 20 Y, 2p
Ty, - Zpa, 1y, _

, . The measurement errors ify the error matrix as.
Ta, a fa, & wY
e1012 2 1.5x10°m u

é.SXlO m 4x10° mAZH

Eq. (13) glves
2 @2 ml
20y, A9, 4 =
(%)e@ﬂ ”@m " m Va =
VP vt t?

V,, =3.39 x10 * n??

- 4p2V11+2sz12+4p2
Thusr = (0.159 + 0.0184) m
For y,, Eq. (13) gives

(DY2)2 :g V11+2g—£a1 V12 +§a1 g =2.92 x10* m/

Thusa = (6.28 + 0.54) x 10" m/<.

-17 -
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digtribution function of the main experiment. Idedlly, the two experiments can be treated as
one joint experiment with an added parameter a,,., to account for the systematic effect.

In some cases a systemdtic effect cannot be estimated apart from the main experiment.
Example 2 can be made into such a case. Let us assume that among the beam of
monoenergetic particles there is an unknown background of particles uniformly distributed in
range. In this case the didtribution function would be:

f(a, a, a, x) = 1\1 ! exp?- 1t asy
v G G AT T u
Cif2a, & 2 a4 'p

where

Xmax

Cla, a,a)= (fdx

xmin

Thesolution a*, is smply related to the percentage of background. The systematic error is
obtained using Eq. (11).

10 - Unigueness of Maximum-L ikelihood Solution

Usudly it isamatter of taste what physical quantity ischosen asa..

For example, in a lifetime experiment some workers would solve for the lifetime, t*, while

others would solve for | *, where | = 1/t. Some workers prefer to use momentum, and

others energy, etc. Consider the case of two related physica parameters | and a. The

maximum-likelihood solution for a is obtained from 11TT_W: 0. The maximum-likelihood
a

olution for | isobtained from 11TTTW: 0. But thewe have:

ME:O’ and ﬂ_W:O

fla 1l |

Thus the condition for the maximum-likelihood solution is unique and independent of the

arbitrariness involved in chioce of physicd parameter. A lifetime result t* would be related

: 1
tothesolution | * by t* = —.

*

The basic shortcoming of the maximum-likelihood method is what to do about the a priori
probability of a . If theapriori probability of a is G(a) and the likelihood function obtained
for the experiment aoneis H(a), then the joint likdihood function is.

L(a) = G(a) H(a)

-18 -
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w=InG+InH

‘ﬂ_w: MIinG N MinH
fla fla fa

finH (&) _ TinG(a*)
Ta Ta

give the maximum likelihood solution. In the absence of any a priori knowledge the term on
the right hand-side is zero. In other words, the standard procedure in the absence of any a
priori information is to use an a priori digribution in which dl vaues of a ae equaly
probable. Strictly speaking, it isimpossble to know a "true’ G(a), because it in turn must
depend on its own a priori probability. However, the above equation is useful when G(a) is
the combined likdihood function of dl previous experiments and H(a) is the likelihood
function of the experiment under consideration.

Thereisadass of problems in which one wishes to determine an unknown digtibution in a ,
G(a), rather than asingle value a, .For example, one may whish to determine the momentum

digtribution of cosmic ray muons. Here one observes:

L(G) = (G(@)H (a;x)da

where H(a;X) is known from the nature of the experiment and G(a) is the function to be
determined. This type of problem is discussed in Referencd 101,

11 - Confidence Intervalsand Their Arbitrariness

So far we have worked only in terms of relative probabilities and RMS values to give an
idea of he accuracy of the determination a = a* . One can dso0 ask the question, "Whét is
the probability that a lies between two certain valuessuch as @' and &' ?'. Thisis cdled a
confidence interval.

(-da
P@<a<a')= <

(‘j_da
-¥

(101 M. Annis, W. Cheston, H. Primakoff, "On Statistica Estimation in Physics',
Revs. Modern Phys. 25 (1953), 818
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Unfortunately such a probability depends on the arbitrary choice of what quantity is chosen

for a. To show this congder the area under thetall of L(a) inthe Fig. 3.

L(a)

s

0

3 m\\\xxxxxﬁ SR

a

-,

Fig. 3. Shaded areais P(a> a’), sometimes cdled the confidence limit of &'.
¥

(‘j_da

P@a>a)= %

(‘j_da
-¥

If1 =1 (a) had been chosen as the physical parameter instead, the same confidence interval
IS

¥ ¥ T“
3 S ga
Pl >1)=1—= £ 1@ 1 p@>a)
gd g
-¥ -¥

Thus, in generd, the numeric vaue of a confidence interva depends on the choice of the
physica parameter. Thisis dso true to some extent in evauating Da . Only the maximum-
likelihood solution and the relative probabilities are unaffected by the choice of a . For
Gaussan digributions, confidence intervas can be evduated by using tables of the
probability integrd. Tables of cumulative binomid didributions and cumulative Poisson
digributions are dso avalable. Appendix V contains a plot of the cumulative Gaussan
digtribution.

12 - Binomial Distribution

Here we are concerned with the case in which an event must be one of two classes, such as

up or down, forward or back, positive or negative, etc. Let p be the probability for an event
of Class 1. Then (1 - p) isthe probability for Class 2, and the joint probability for observing

N, eventsin Class 1 out of N tota eventsis:
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_ NI N (1 NN
P(N,, N)_—Nl!(N- Nl)!p aQ-p The Binomid Didribution 14

N
Note that é P(j, N):[p+(1- p))]N =1 . Thefactorias correct for the fact that we
j=0
are not interested in the order in which the events occurred. For a given experimenta result
of N, out of N eventsin Class 1, the likelihood function L(p) is then:

NI

: No (1 —pg) NN
NJ(N- Ny =)

L/(p) =

w= N, In(p) + (N-N) In(1-p) + const.

fw_ N, N-N;

o p 1-p

(15

Tw_ N, N-N,

>  p* @- p)?

(16)

From Eqg. (15) we have:

N
x — _ 1
g N

From (16) and (17):

(17)

—_— 1
2
(p- p\-) - N]_ R N - Nj_

p** (- p)’

Dp= /W (18)

The reaults, Egs. (17) and (18), aso happen to be the same as those using direct
probabilityl11]. Then:

[11] Example 4 In Example 1 on the p - e decay angular distribution we found that

3.
Da= N Isthe error on the asymmetry parameter a .

Suppose that the individua cosine x; of each event is not known. In this problem al we

know is the number up vs. the number down. What isthen Da? Let p be the probability of a
decay in the up emisphere; then we have:
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le pN

and

(N- N)?’=Np(1-p)

13 - Poisson Distribution

A common type of problem which fdls into this category is the determination of a cross
section or amean free path. For amean free path | , the probability of getting an event in an

interva dx is% . Let P(0,x) be the probability of getting no eventsin alength x . Then we

have

dP(0,x) = - P(0,X) %

In P(0,X) = - |§+ congt.

X
I

P(OX)= e' (atx=0,P(0,x) = 1, thesameasfor the radioactive decay law) (29

Let P(N,x) be the probability of finding N events in a length x . An dement of this
probability is the joint probability of N eventsat dx,, ...., dx times the probability of no

eventsin the remaining length:

1+E
_01+axdx_ 2_1.2a - ):3_3
o 2 2 2 4 2 4
By Eq. (18), remembering that ‘H_p_l
fa 4’

Da=4 u

N
4x a’d
g
- 4 3 . .
For smdl athisis Da=\/% as compared to Da:J% when the full information is used.
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M-
=4

d"P(N,X) = O:—‘ﬂ el (20)
u

CD

i=1

The entire probability is obtained by integrating over the N-dimensiond space. Note that the
integrdl:

'N X\dxi _w(o
O L&
i=1 g e g

does the job except that the particular probability element in Eq. (20) is swept through N!
times. Dividing by N! gives

X
o
P(NX)= -—— e The Poisson distribution (21)
Asacheck, note:
& gxp 0
v igg § y+ xox
aP(ix==e'ca=——+=e'e=1
j=0 o ! -
S 3
..N
X0
— & 3_5 =z X
N=aNEZel =X
aruTN |

Likewiseit can beshown that (N - N)2=N.
Equation (21) is often expressed in termsof N :
—N

P(N, N) = % eV the Poisson distribution (22)

This form is useful in analyzing counting experiments. Then the "true’ counting rateis N .

We now consder the case in which, in a certain experiment, N events were observed. The
problem isto determine the maximumtlikelihood solution fora= N and itserror:
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aN

L(a) = N e’

w=NIlna-a-InN!

fw_ N

fa a

=

ZW ﬁ

a2  a?
Thus we have:

a
a* =N and by Eq. Da= —=+/N
y Eq. (7) N

In a cross section determination, we havea = r x s, wherer is the number of target nucle
per cmB3 and x isthetota path length. Then:

s* = Eand bs 1

rx S_*_ W

In condlusion we notethat a* * a

¥ ¥
~pl(a)da  cp" e ?da
R A T

a= = N+ 1

¥ ¥
J-(@da (p'e’da
0 0

N!

14 - Generalized M aximum-L ikelihood M ethod

So far we have adways worked with the standard maximum-likelihood formaism, whereby
the digtribution functions are aways normaized to unity. Fermi has pointed out thet the
normalization requirement is not necessary o long asthe basic principle is observed: namely,
that if one correctly writes down the probability of getting his experimenta result, then this
likelihood function gives the relative probabilities of the parameters in question. The only
requirement is that the probability of getting a particular result be correctly written. We shdll
now consder the genera case in which the probability of getting an event in dx is F(x) dx,
and:

)%:dx = N(a)

Xmin
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IS the average number of events one would get if the same experiment were repeated many
times. According to Eq. (19), the probakility of getting no eventsin asmal finite interval Dx
IS

X+Dx

e _ 0
P(0,Dx) = expé— 0¢ng

The probability of getting no eventsin the entire interval Xmin < X < Xmax IS the product of
such exponentias or:

Xex o _
P(0,(Xmax - Xmin)) = exp&- Fdx==e™"
Xmin ﬂ

The dement of probability for a particular experimental result of N events occurring a x
=X, X, iISthen:

— N
d'p = e ™ O F(x)dx,
i=1
Thus we have:
— N
L@ =e " OQF(x)
i=1
and:

w(a) = éN InF(a;x)- Xrn(;jaxz(a; X)dx

The solutions a; = a*; are dill given by the M smultaneous equations.

w_o

fa

The errors are il given by:

(-2 )@ -a") =),

where
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e ﬂzW
S CX Y

The only changeisthat N no longer gppears explicitly in the formula:

A derivation amilar to that used for Eq. (8) shows that N is dready taken care of in the
integration over F(X).

In a private communication George Backus has proven, using direct probability, that the
Maximum-Likelihood Theorem dso holds for this generdized maximum-likelihood method
and that in the limit of large N there is no method of estimation thet is more accurate. Also
see Sect. 9.8 of [12],

In the absence of the generdized maximum-likelihood method our procedure would have
been to normdize F(a;x) to unity by usng:

F (& x)
(‘ Fdx

f(a;x) =

For example, consider a sample containing just two radioactive species, of lifetimes a; and
ap. Let az and a4 bethetwo initid decay rates. Then we have:

X X

Fla)=age*+a e ™

where x isthetime The standard method would then be to use:

X X
e*+ae® a,
+a,

f(a;x) = withag = P
2 3

which is normalized to one. Note that the four origina parameters have been reduced to
threeby using ag = % . Then ag and a4 would be found by using the auxiliary equation:

3

(121 A. G. Frodesen, O. Skjeggestad, H. Tofte, “Probability and Statistics in Particle
Physics’ (Columbia University Press, 1979) ISBN 82-00-01906-3. The title is mideading,
this is an excdlent book for physcigs in dl fidds who whish to pursue the subject more
deeply than is done in these notes.
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¥
grdx =N
0

the total number of counts. In this standard procedure the equation:

must aways hold. However, in the generalized maximum-likelihood method these two

quantities are not necessarily equd. Thus the generdized maximumt-likelihood method will
give adifferent solution for the g;, which should, in principle, be better.

Another example is that the best vaue for a cross section s is not obtained by the usud
procedure of setting r sL = N (the number of eventsin a path length L). The fact that one
has additiond apriori information such as the shape of the angular distribution enables one to
do a somewhat better job of calculating the cross section.

15 - The L east-Squares M ethod

Until now we have been discussing the stuation in which the experimenta result is N events
giving precise vaues X, ..., X, Wherethe xj may or may not, as the case may be, be al
different.

From now on we shdl confine our attention to the case of p measurements (not p events) at
thepaintsx,, ...., X . The experimentd resultsare (y1 £ S1), ..., (Yp = Sp). One such type
of measurement is where each measurement condsts of N; events. Then y; = N, and is

Poisson-distributed with sj = /N, . In this case the likelihood function is:

Lzé y(x)" e
i Nt

ad
g — 3 —
w=& N, I(y(x))- & Y(x)+ cons.

We use the notation Y/(ai ; X) for the curve that isto be fitted to the experimentd points. The
best-fit curve corresponds to @ = a*; . In this case of Poisson-distributed points, the
solutions are obtained from M smultaneous equations:

$Iy0) _& Ny 1y0o)
a=1 18 az1 Y(X,) Ta
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y Fig. 4
y(x)

A B A A g

Fig. 4. y(x) isthe function of known shape to be fitted to the 7 experimenta points.
If dl theN; >> 1, then it is a good gpproximation to assume each y; is Gaussan-distributed
with standard deviation s; (it is better to use N; rather than N; for s > where N can be

obtained by integrating y(x) over the i-th interval). Then one can use the famous least
sguares method.
The remainder of this section is devoted to the case in which the y; are Gaussian-distributed

with dandard deviation s; (see Fig. 4). We shall now see that the least-squares method is

mathemdicaly equivaent to the maximum-likelihood method. In this Gaussan case the
likdihood function is:

P 1 e - y(x.))2U
L:O é‘ (ya y( a)) -

23
OTms, 28 =7 =
1 d
w@)=- - S(a)- § In(v2ps ,)
where
S(a): g g(ya - y(;(a)) B (24)
g Sa
Thesolutionsg = a*; aregiven by minimizing S@) (maximizngw ):
1S(a)
T 0 (25)
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Thisminmumvdueof S iscdled St , the least-squares sum.The values of a; which minimize

ae cdled the least-squares solutions.Thus the maximum-likelihood and least-squares
solutions are identica. According to Eq. (11), the least squares errors are:

1S
Ta,Ta,

(a - a*)(a - 3;*) =(H;"), where H, =

N

Let us consider the special caseinwhich y(a,; x) islineer inthe a;:

y@;¥=a a, fa(x)

a=1

(Do nat confuse this f(x) with the f(x) on page 2)

Then:
e g u
ﬂS P éya_ é ab fb(xa)[:l
= é b1 Uf. (x 26
o= 288l 26)
& H

Differentiatiing with repect to g gives

Hi=a—————— 27
a=1 S,
Define
f. (x
U =4 yas,g 2) 28)
a=1 a
Then:

O=u-a*-H (29)
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isthe solution for thea*’s. The errorsin a are obtained using Eq. (11). To summarize:

If y(ai;x):é a, fa(x)

_8 4 Yia
_ a% %M_)
a=1 b=l
(a| - ai*)(aj - aj*)_t'ij where:
é) fi(Xa)fj(Xa)

Hiji=a ————— (30)
a=1 S

SD

a

Equation (30) is the complete procedure for calculating the least-squares solutions and their
errors. Note that even though this procedure is called "turvedfitting” it is never necessary to

plot any curves. Quite often the complete experiment may be a combination of severa
experiments in which severd different curves (dl functions of the a; ) may jointly be fitted.

Then the Svaue is the sum over dl the points on dl the curves. Note that snce w(a*)

decreases by % unit when one of the g; has the value (a*; + Dg;), the S-value must increase

by one unit. That is

See Examples 5131, 6[14], 7113],

[13] Example 5: y(x) is known to be of the form y(x) = a, + ax. There are p
experimental measurements (y; = s).
Using Eq. (30) we havef, =1, f, =X,

¢p  ax! . .
H:gos_z oszﬂ 1 s ? gaoxi 'axag
Toéaax. axdi pAx-Axfeax P g

€s2 s2 f
*_é aé.xj_é.xaaxya a*_pé.xaya_éxaéya

- 2 o o

pd x2- (& %) P& x2- (& x,)

These ae the linear regresson formulas which are programmed into many pocket
caculators. They should not be used in those cases where the s; are not al the same. If the
s; aedl equd, the errors are

(Da1)2 :(H_l)ll (DaZ)Z:(H_l)ZZ or
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[14] Example 6: The curve to be fitted is known to be a parabola. There are four
experimental points at x = -0.6, -0.2, 0.2, 0.6. The experimenta resultsare5+ 2,3+ 1,5

+ 1, and 8 + 2. Find the best-fit curve.

y(x)=a, +ax+a,x*; f,=1, f,=x, f,=x

4 1 4 Xj 4 X:
Hllzé _2; szzé._21 H33:é. 2
a=l 5 a=1S a=1S
4 X ¢ x? ¢ x3
H.. = 2 a : H..=H..= _a’ H..= a
12 218 a21 13 22 2152 23 213 s
(§2.5 0 0.26@ §0.664 0 - 2.54@
H=50 026 0§ H'=g 0 3847
.26 0 0.0684 g 2.54 0 24.418§
(the error matrix)
u=[ 1125 0.85 1.49]
a*=368 ; Day=0815 ; Da,Da, =0
a* =327 X Da, = 1.96 X Da,Da, = -2.54
az* =7.808 ; Da; = 4.94 X Da,Da, =0

y(X) = (3.685 + 0.815) + (3.27 + 1.96)x + (7.808 + 4.94)x’

u_
0 g=V

IS the best-fit curve. Thisis shown with the experimenta pointsin Fg. 5.
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Least squares when the y; are not independent

Let:

Vi = (yi - Y/i)(yj - 91)

20T

15T

10 T

-15 -1 -0.5 0 0.5 1

Fig. 5. This parabolaisthe least squaresfit to the 4 experimenta pointsin Example 6.

[15] Example 7: In Example 6 what is the best estimate of y at x = 1? What is the error of
this estimate?

Solution: putting X = 1 into the above equation gives

y =3.685 + 3.27 + 7.808 = 14.763

Dy is obtained using Eq. (12).

Dy:\/ f12V11 + f22V22 + f32\/33 + 2 fl f2V12 + 2 f1 f3V13 + 2 f2 f3V23
Dy =,/0.664+3.847x +24.418x* +0- 5.08x? +0

Seting x =1 gives Dy = 5.137
Soatx=1y=14763 + 5.137.
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be the error of the y measurements. Now wwe shall trest the more generd case where the
off diagond eements need not be zero; i.e, the quantities y; are not independent. We see
immediatdy from Eq. (11a) that the log-likelihood function is:

w=- %(y Y/)-\[l : (y- ?/)T +const.

The maximumtlikelihood solution is found by minimizing:

where: Generaized Least Squares Sum

Vi = (yi - Y/iij } 91)

16 - Goodness of Fit, the c 2 Digtribution

The numerica vaue of the likdihood function a L(a*) can, in principle, be used as a check
whether one is using the correct type of function for f(a;x). If one is usng the wrong
function, the likelihood function will be lower in height and of greater width. In principle one
can cdculate, usng direct probability, the digtribution of L(a*) assuming a paticular true
f(ag; x). Then the probakility of getting an L(a*) smdler than the vaue observed would be a
useful indication of whether the wrong type of function f(a;x) had been used. If for a
particular experiment one got the answer that there was one chance in 104 of getting such a
low vaue of L(a*), onewould serioudy question either the experiment or the function f(a;x)

that was used.

In practice, the determination of the digtribution of L(a*) is usudly an impossbly difficult

numericd integration in N-dimensiond space. However, in the specia case of the least-

squares problem, the integration limits turn out to be the radius vector in p- dimensiond

gpace. In this case we use the didtribution of S@*) rather than of L(a*). We shdl firg

consder the digtribution of ag). According to Egs. (23) and (24) the probability dement is:

- Sl\J
d°Ppexpa—ud®y,
H p82 Hd Yi

Notethat S=r % wherer isthe magnitude of the radius vector in p-dimensiona space. The
volume of ap- dimensond sphereisU (1 r P. The volume dement in this spaceisthen:

dPy ur **dpp s"%shds

Thus,
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dP(S)u % e Pods

The normdization is obtained by integrating from S= 0to S=¥.

P(S,)=————5 /e ias, @3
2% &%)
where § = Jap).

Thisdistribution is the well-known ¢? distribution with p degrees of freedom.
c? tables of:

PCE’=S3 9= FP(S
S

for severa degrees of freedom are in the "Handbook of Chemistry and Physics' and other
common mathematicd tables.

From the definition of S(Eq. (24)) it is obvious that So= p.

One can show, using Eq. (29), that (S- §o)2 = 2p. Hence, one should be suspicious if his
experimenta result gives an S-vaue much greater than:

(p++/2p)

Usudly &, is not known. In such a case oneis interested in the distribution of

S = §a*)

Fortunately, the digtribution is dso quite smple. It is merdy the c? digtribution of

(p- M) degrees of freedom, where p is the number of experimenta points, and M is the
number of parameters solved for. Thus we have:

dP(S¥) = c? distribution for (p- M) degrees of freedom

S¥=(p- M) and DSt = {2(p- M) (31)

Since the derivation of Eqg. (31) is somewhat lengthy, it is given in Appendix [I[61(17] |

[16] Example 8: Determine the ¢? probability of the solution to Example 6.
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— .2 — .2 — .2 — .2
- y(-0.6)0 - y(-02)0 - y(0.2) 0 - y(0.6) 0
S*ng y(06)i+§8 y(02)i+g5 y(02)i+g@ y(06)i
2 1 5 1 3 2

St =0.674 comparedto S*=4-3=1

According to the ¢ table for one degree of freedom the probability of getting S* > 0.674 is
0.41. Thusthe experimenta data are quite consistent with the assumed theoretical shape of:

y(X)=a, +8,X+a,X*

[17] Example 9 Combining Experiments: Two different laboratories have measured the
lifeime of the K particle to be (1.00 + 0.01) x 10-10 sec and (1.04 + 0.02) x 10-10 sec
repectively. Are these results redlly inconsstent?

According to Eq. (6) the weighted mean is a* = 1.008 x 10-10 sec.(this is dso the lesst
squares solutionfor t ). Thus:

.2 .2 _
S = .00- 1.0089 N §-'04- 1.0089 _39 Sx=9.1=1
e 000 g e 002 g

According to the ¢ table for one degree of freedom the probability of getting S*> 3.2 is
0.074. Therefore, according to statistics, two measurements of the same quantity should be
at least thisfar gpart 7.4 % of thetime.
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Appendix |: Prediction of Likelihood Ratios

An important job for a physicis who plans new experiments is to estimate beforehand just
how many events will be needed to "prove’ a certain hypothesis. The usud procedure is to
cdculate the average logarithm of the likdihood ratio. The average logarithm is better
behaved mathematicdly than the average of the ratio itsdf.

We have:

Iog R=N %——f A(X)dx  assuming A istrue, (32
or
Iog R=N (%——f g (X)dx  assuming B istrue.

Consider the example (given in Section 3) of the K™ meson. We believe spin zero is trug,
and we wish to establish betting odds of 10% to 1 againgt spin 1. How many events will be
needed for this ? In this case Eq. (32) gives.

1 1
log104=4=- (‘j\llog(%)dx= -N (Jog(2x)dx; N=30
0 0

Thus about 30 events would be needed on the average. However, if oneis lucky, one might
not need so many events. Consider the extreme case of just one event with x=0; R would

then be infinite and this one single event would be complete proof in itsdlf that the K™ is spin
zero. Thefluctuation (RMS spread) of log(L) for agiven N is
2 020

(log R- fog R) =N e o Afdx 2

CWD)CD)CD
& |- I o:

o
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Appendix I1: Digribution of the L east-Squar es Sum

We shdl define

f (%)
S

Yi
S

the vector Z; =— and the matrix Fijj =

Note that:

H=F" «F by Eq.(27),Z*F=a**H byEq. (28) and (29) (33
Then
a*=Z+F-H1 (34

Sozg g[(zi - a;F; )Jr(""]T - aj)Fij]

i=1 j=

where the ungtarred a is used for ay,.

30:5_ éM SL % 2 (Xi)gz+2(;- a - ET)E a - a)T+(g* - Q)ET El-af
G

i=1 j=1 i i

SOZS* +2(Z' E‘i ETEXE—)T +(Z' E. ﬂ—l_gﬂ—l)ﬂ(ﬂ—lFTzT ) ﬂ—l_aT)

using Eq. (34). The second term on the right is zero because of Eqg. (33).
S=s,-(z-F-aF"EH*HH(ETZ" - FTFa")

T

z?
4]

sf 13 o
Note that:

Q'=[EH"FJEH"ET)= (EH " ET)=Q

If gj isan eigenvalue of Q, it must equal gj2, an eigenvalue of Q2. Thus gj = 0 or 1. The
traceof Qis

Trgz é. FabH bchc-; :é. chHt;cl :Trl_ =M

ab.c b,c

Since the trace of amatrix isinvariant under a unitary transformetion, the trace dways equas
the sum of the elgenvaues of the matrix. Therefore M of the eigenvadues of Q are one, and
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(p - M) are zero. Let U be the unitary matrix which diagondizes Q (and dso (1 - Q)).
According to Eq. (35),

S=heU-@1-Q+U™h", whee h=(Z-Z)-U’

S =§ mh? where m, arethe eigenvalues of (1 - Q).

a=1

p-M
S = é hZ since the M nonzero eigenvaues of Q cancel out M of the eigenvalues of 1.

a=l

Thus:
dP(S ) e od

where S is the square of the radius vector in (p - M)-dimensiond space. By definition (see
Section 16) thisis the ¢? digtribution with (p - M) degrees of freedom.
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Appendix |11: L east-Squareswith Errorsin Both Variables

Experiments in physcs desgned to deemine parameters in the functiond
rel ationshipbetween quantities x and y involve a series of measurements of x and the
corresponding y. in many casess not only are there measurement errors dy; foreach vy, ,

but also measurement errors dx; for each x; . Most physicists treat the problem asiif al the
dx; =0 using the standard least squares method. Such a procedure loses accuracy in the
determination of the unknown parameters contained in the function y=f(x) and it gives
estimates of errorswhich are smaller than the true errors.

The dsandard least squares method of Section 15 should be used only when dl the

dx; <<dy,. Othewise one must replace the weighting factorssizin Eq. (24) with

(dj):2 where;
Al 0 2
df =¢ _eWEJ, (dX f +(dyj) (36)

Eq. (24) then becomes

48100
j=1§ dj :

A proof isgiven in Referencd 181,

We see that the standard least squares computer programs may ill be used. In the case
where y=a, +a,x onemay use what are caled linear regresson programs, and where y is
apolynomid in x one may use multiple polynomia regresson programs.

]

The usua procedure is to guess starting values for Al and then solve for the parameters

X
a’; using Eq. (30) with s ; replaced by d; . The newgéT—fQ can be evduated and the

&fx g’
procedure repested. Usudly only two iterations are necessary. The effective variance
method is exact in the limit that E—f is constant over the region dx; . Thismeansit is dways
X

exact for linear regressions! 191,

(18] J, Orear, “Least Squares when Both Variables Have Uncertainties’,
Amer. Jour. Phys., Oct. 1982.

[19] Some datistics books written specificdly for physicists are:
H. D. Young, “Statigtica Treatment of Experimental Data’, McGraw-Hill Book Co., New
York, 1962
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Appendix 1V: Numerical Methods for Maximum Likdihood and L east-Squares
Solutions

In many cases the likelihood function is not andytica or ese, if andyticd, the procedure for
finding the a*j and ther errors is too cumbersome and time consuming compared to
numerica methods usng modern computers.

For reasons of clarity we shdl firgt discuss an inefficient, cumbersome method cdled the grid
method. After such an introduction we shdl be equipped to go on to a more efficient and
practica method called the method of steegpest descent.

The grid method

a, | (W —3/2)
(w* —1)
(W —1/2)

0 ar 0 a;  a* a EN

Fig. 6. Contours of fixed w endosng the maximum likelihood solution w*.
Fig. 7. A poor statistics case of Fig. 6.

If there are M parametersa, ,......,a,, to be determined one could in principle map out afine
grid in M-dimensiond space evduatingw(a) (or S(a)) a each point. The maximum vaue
obtained for a is the maximum likdihood solution w . One could then map out contour

surfaces of w:(jaew* - %9 W=(W* - 1), etc. Thisisillustrated for M = 2in Fig. 6.
e 2

In the case of good datistics the contours would be smdl lipsoids. Fig. 7 illustrates a case
of poor datistics.

P. R. Bevington, “Data Reduction and Error Analysis for the Physical Sciences’, McGraw-
Hill Book Co., New Y ork, 1969

W. T. Eadie, D. Drijard, F. E. James, M. Roos, B. Sadoulet, “ Statistical Methods in
Experimental Physics’, North Holland Publishing Co., Amsterdam-London, 1971

S. Brandt, “ Satistica and Computationa Methodsin Data Andysis’, secon edition, Elsevier
North-Holland Inc., New Y ork, 1976

S. L. Meyer, “Data Andyss for Scientists and Engineers’, John Wiley and Sons, New
York, 1975
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Here it is better to present the gew* - %9 contour surface (or the (S* + 1) surface) than to
e a

try to quote errorson a. If oneisto quote errorsit should beintheform a, <a, <a where
a; and a, are the extreme excursions the surface makesin a, (see Fig. 7). It could be a
serious mistake to quotea, or a, astheerrorsin a, .

In the case of good datistics the second derivetives W - H, could be found

numericaly in the region near w' .
Theerrorsin the a’s are then found by inverting the H-matrix to obtain the error matrix for
ai.e:

(a - a*)(a - a;*) = (HY)jj
The second derivatives can be found numericaly by using:

ﬂz_wz [W(a1 +Da, &, +Daj)+w(ai,aj ) \N(ai +Da;, a ) W(ai’aj +Dajy

ﬂai ﬂaj Da1 Ihj

1°S
fafa,

In the case of least squaresuse H;; =

So far we have for the seke of simplicity telked in terms of evaluating W(a) over afine grid

in M-dimensiona space. In most cases this would be much too time consuming. A rather
extensve methodology has been developed for finding maxima or minima numericdly. In this
gppendix we shdl outline just one such gpproach called the method of steepest descent. We
shell show how to find the least squares minimum of S(a). (This is the same as finding a

maximumin W(a)).

Method of Stegpest Descent

At firg thought one might be tempted to vary a, (keeping the other a’s fixed) until a
minimum is found. Then vary a, (kesping the others fixed) until & new minimum is found,

and so on. Thisisillugrated in Fig. 8 where M = 2 and the errors are strongly correlated.
But in Fig. 8 many trials are needed. This stepwise procedure does converge, but in the case
of Fig. 8, much too dowly. In the method of stegpes descent one moves againg the gradient
in a-space:

So we change dl the a's smultaneoudy in the retio:
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1S, 1S 1S,
‘ﬂal . ﬂa2 ﬂag L
* Starting point (1)———(2) » Starting point | (1)
a a ]
%'/’ (S +1
S*
0 "0 a

Fig. 8. Contours of constant Svs. a; and a,. Stepwise search for the minimum.
Fig. 9. Same as Fig. 8, but using the method of steepest descent.

In order to find the minimum dlong thislinein a-gpace one should use an efficient step size.
An effective method is to assume S(s) varies quadrdicaly from the minimum position s’

where sis the distance dong thisline. Then the $ep Sze to the minimum is.
Ds3S -4S,+S,

L=s+—
2 §-25,+S,

where S, S,,and S, areequaly spaced evaluations of S(s) dong s with dep sze DS
datingfrom s,,i.e, s,=s +Ds, s,=s +2Ds.

One or two iterations using the above formulawill reach the minimum aong s shown as point
(2) in Fig. 9. The next repetition of the above procedure takes us to point (3) in Fig. 9. It is

clear by comparing Fig. 9 with Fig. 8 that the method of stegpest descent requires much
fewer computer evaluationsof S(a) than does the one variable at atime method.

Least Squares with Congraints

In some problems the posshble vaues of the a; are redricted by subsidiary constraint

relations. For example, consider an dagtic scattering event in a bubble chamber where the
messurements y; are track coordinates and the a; are track directions and momenta

However, the combinations of &, that are physicaly possible are restricted by energy-

momentum consarvation. The most common way of handling this Stugtion is to use the 4
congtraint egquations to eiminate 4 of the a'sin S(a). Then S is minimized with respect to
theremaining a’s.

In this example there would be (9 — 4) = 5 independent a’'s. two for orientetion of the
scattering plane, one for direction of incoming track in this plane, and one for scattering
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angle. There could dso be congraint relations among the measurable quantities y;. In
ether case, if the method of subgtitution is too cumbersome, one can use the method of
Lagrange multipliers

In some cases the condraining relaions are inequdlities rather than equations. For example,
supposeit isknown that &, must be a positive quantity. Then one could define anew set of
a'swhere (ag)’ =a,,ag=a,, etc. Now if S(a() is minimized no non-physica vaues will be
usad in the search of the minimum.
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Appendix V: Cumulative Gaussan and Chi-Sguared Distributions

The c¢? confidence limit is the probability of Chi-Squared exceeding the observed vaug; i.

Where P, for p degrees of freedom is given by Eq. (308)(20.

0.1

0.01

ConfidenceLevel C.L.

0.001

1 2 3 4 5 6 8 10 20 ¢2 30 40 50 60 80 100

Fig 10(a). c? confidenceleve vs. ¢ ? for np degrees of freedom ( ¢ 2> 1).

Gaussan Confidence Limits

2
2 _ &XO0
Let c = ¢—

O Then for n, =1,
€S g

[20] Fig. 10 is reprinted from:
Rev. Mod. Phys. 52, No. 2, Part 11, April 1980 (page 536).
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ThusCL for ng istwicethe area under asingle Gaussan tail.
For examplethe n, =1 curvefor c? =4hasavaueof CL = 0.046. This means that the
probability of getting [x|® 25 is4.6% for a Gaussian distribution.

o
o

o
)

o ConfidencelLeve C.L.

0.1
0.01 0.02 0.03 0.04 0.06 0.08 0.1 0.2 ¢c2 03 04 06 08 1

Fig 10(b). ¢c? confidenceleve vs. c¢? for np degrees of freedom ( ¢ < 1).
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