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Notes on Statistics for Physicists, Revised

Jay Orear

Preface

These notes are based on a series of lectures given at the Radiation Laboratory in the
summer of 1958. I wish to make clear my lack of familiarity with the mathematical literature
and the corresponding lack of mathematical rigor in this presentation. The primary source for
the basic material and approach presented here was Enrico Fermi. My first introduction to
much of the material here was in a series of discussions with Enrico Fermi, Frank Solmitz
and George Backus at the University of Chicago in the autumn of 1953. I am grateful to Dr.
Frank Solmitz for many helpful discussions and I have drawn heavily from his report "Notes
on the Least Squares and Maximum Likelihood Methods"[1]. The general presentation will
be to study the Gaussian distribution, binomial distribution, Poisson distribution, and least-
squares method in that order as applications of the maximum-likelihood method.

August 13, 1958
Preface to Revised Edition

Lawrence Radiation Laboratory has granred permission to reproduce the original UCRL-
8417. This revised version consists of the original version with corrections and clarifications
including some new topics. Three completely new appendices have been added.

July 28, 1982

                                                
[1] Frank Solmitz, "Notes on the Least Squares and Maximum Likelihood Methods"

Institute for Nuclear Studies Report, University of Chicago.
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1 - Direct Probability

Books have been written on the "definition" of probability. We shall merely note two
properties: (a) statistical independence (events must be completely unrelated), and (b) the
law of large numbers. This says that if p1 is the probability of getting an event of Class 1 and
we observe that N1  out of N  events are in Class 1, then we have:

1
1lim p

N
N

N
=





∞→

A common example of direct probability in physics is that in which one has exact knowledge
of a final-state wave function (or probability density). One such case is that in which we
know in advance the angular distribution f(x), where x = cosθ, of a certain scattering
experiment. In this example one can predict with certainty that the number of particles that
leave at an angle x1 in an interval ∆x1 is N f(x1) ∆x1, where N, the total number of scattered
particles, is a very large number. Note that the function f(x) is normalized to unity:

∫
−

1

1

)( dxxf = 1

As physicists, we call such a function a "distribution function". Mathematicians call it a
"probability density function". Note that an element of probability, dp, is:

dp = f(x) dx

2 - Inverse Probability

The more common problem facing a physicist is that he wishes to determine the final-state
wave function from experimental measurements. For example, consider the decay of a spin
1
2

 particle, the muon, which does not conserve parity. Because of angular momentum

conservation, we have the a priori knowledge that:

f(x) = 
1 + ax

2

However, the numerical value of a is some universal physical constant yet to be determined.
We shall always use the subscript zero to denote the true physical value of the parameter
under question. It is the job of the physicist to determine a0. Usually the physicist does an
experiment and quotes a result a = a* ± ∆a. The major portion of this report is devoted to
the questions "What do we mean by a*  and ∆a ?" and "What is the best way to calculate
a*  and ∆a ?". These are questions of extreme importance to all physicists.
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Crudely speaking, ∆a is the standard deviation[2], and what the physicist usually means is
that the "probability" of finding:

(a* - ∆a) < a0 < (a* + ∆a)  is 68.3 %

(the area under a Gaussian curve out to one standard deviation). The use of the word
"probability" in the previous sentence would shock a mathematician. He would say the
probability of having:

(a* - ∆a) < a0 < (a* + ∆a)  is either 0 or 1

The kind of probability the physicist is talking about here is called inverse probability, in
contrast to the direct probability used by the mathematician. Most physicists use the same
word, probability, for the two completely different concepts: direct probability and inverse
probability. In the remainder of this report we will conform to this sloppy physicist-usage of
the word "probability".

3 - Likelihood Ratios

Suppose it is known that either Hypothesis A or Hypothesis B must be true. And it is also
known that if A is true the experimental distribution of the variable x  must be fA(x), and if B
is true the distribution is fB(x). For example, if Hypothesis A is that the K meson has spin
zero, and Hypothesis B that it has spin 1, then it is "known" that fA(x) = 1 and fB(x) = 2x,
where x  is the kinetic energy of the decay π- divided by its maximum value for the decay
mode +−+ +→ ππ 2K .

If A is true, then the joint probability for getting a particular result of N events of values
x1; x2; ...; xN  is:

∏
=

=
N

i
iiAA dxxfdp

1

)(

The likelihood ratio R  is:

                                                
[2] In 1958 it was common to use probable error rather than standard deviation. Also some
physicists deliberately multiply their estimated standard deviations by a "safety" factor (such
as π). Such practices are confusing to other physicists who in the course of their work must
combine, compare, interpret, or manipulate experimental results. By 1980 most of these
misleading practices had been discontinued.
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∏
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1

1
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  (1)

This is the probability that the particular experimental result of N events turns out the way it
did, assuming A is true, divided by the probability that the experiment turns out the way it
did, assuming B is true. The foregoing lengthy sentence is a correct statement using direct
probability. Physicists have a shorter way of saying it by using inverse probability. They say
Eq. (1) is the betting odds of A against B. The formalism of inverse probability assigns
inverse probabilities whose ratio is the likelihood ratio in the case in which there exist no a
priori probabilities favoring A or B[3]. All the remaining material in this report is based on this
basic principle alone. The modifications applied when a priori knowledge exists are
discussed in Section 10.

An important job of a physicist planning new experiments is to estimate beforehand how
many events he will need to "prove" a hypothesis. Suppose that for the +−+ +→ ππ 2K one

wishes to establish betting odds of 104 to 1 against spin 1. How many events will be needed
for this ? This problem and the general procedure involved are discussed in Appendix I:
Prediction of Likelihood Ratios.

4 - Maximum-Likelihood Method

The preceding section was devoted to the case in which one had a discrete set of
hypotheses among which to choose. It is more common in physics to have an infinite set of
hypotheses; i. e., a parameter that is a continuous variable. For example, in the µ-e decay
distribution:

f(a;x) = 
2

1 ax+

the possible values for a0 belong to a continuous rather than a discrete set. In this case, as
before, we invoke the same basic principle which says the relative probability of any two
different values of a is the ratio of the probabilities of getting our particular experimental
results, xi , assuming first one and then the other value of a  is true. This probability function
of a  is called the likelihood function L(a).

∏
=

=
N

i
ixaFaL

1

);()( (2)

                                                
[3] An equivalent statement is that in the inverse probability approach (also called Bayesian
approach) one is implicitly assuming that the “a priori” probabilities are equal.
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The likelihood function, L(a), is the joint probability density of getting a particular
experimental result, x1; x2; ...; xN  assuming f(a;x) is the true normalized distribution
function:

∫ dxxaf );( = 1

The relative probabilities of a can be displayed as a plot of L(a) versus a.
The most probable value of a is called the maximum-likelihood solution a.
The RMS (root-mean-square) spread of a about a* is a conventional measure of the
accuracy of the determination a = a*. We shall call this ∆a.

∆a = 
2
1

2*)(













 −

∫
∫

Lda

Ldaaa
(3)

In general the likelihood function will be close to Gaussian (it can be shown to approach a
Gaussian distribution as N --> ∞) and will look similar to Fig. 1(b).

Fig. 1. Two examples of likelihood functions L(a)

Fig. 1(a) represents what is called a case of poor statistics. In such a case, it is better to
present a plot of L(a) rather than merely quoting a* and ∆a. Straightforward procedures for
obtaining ∆a  are presented in Sections 6 and 7.
A confirmation of this inverse-probability approach is the Maximum-Likelihood Theorem,
which is proved in Cramer[4] by use of direct probability. The theorem states that in the limit
of large N, a* --> a0 ; and furthermore, there is no other method of estimation that is more
accurate.

In the general case in which there are M parameters, a1; a2; ...; aM  to be determined,
the procedure for obtaining the maximum-likelihood solution is to solve the M simultaneous
equations:

L(a)

0 a

Poor Statistics

a*

Fig. 1(a) L(a)

0 a* a

Good Statistics

∆a

Fig. 1(b)
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0
*

=
∂
∂

= ii aaia
w

    where    w = log L(a1; a2; ...; aM ) (4)

5 - Gaussian Distributions

As a first application of the maximum-likelihood method, we consider the example of the
measurement of a physical parameter a0 , where x  is the result of a particular type of
measurement that is known to have a measuring error σ. Then if x is Gaussian-distributed[4],
the distribution function is:

f(a0;x) = 
1

2πσ
exp 







 −
− 2

2
0

2
)(

σ
ax

For a set of N measurements x i, each with its own measurement error σi, the likelihood
function is:

L(a) = ∏
=








 −
−

N

i i

i

i

ax

1
2

2

2
)(

exp
2

1
σσπ

then:

.
2

)(
2
1

1
2

2

const
ax

w
N

i i

i +






 −
−= ∑

= σ

∑∑
==

−=
∂
∂−

=
∂
∂ N

i i

N

i i

i

a
wax

a
w

1
22

2

1
2

2

2
1

,
2

)(
σσ

(5)

∑∑
==

=−
N

i i

N

i i

i ax

1
2

1
2 0

σσ

                                                
[4] A derivation of the Gaussian distribution and its relation to the binomial and Poisson
distributions is given in Chapter II of R. B. Lindsay, "Physical Statistics", Wiley, New York,
1941, or E. Segrè, "Nuclei and Particles"

∑
=

+
−

−=
N

i i

i const
ax

w
1

2

2

.
2

)(
2
1

σ
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∑

∑

=

== N

i i

N

i i

ix

a

1
2

1
2

*

1
σ

σ
(6)

is the maximum-likelihood solution. Note that the measurements must be weighted according
to the inverse squares of their errors.. When all the measuring errors are the same we have:

N

x
a

N

i
i∑

== 1*                 which is the conventional determination of the mean value.

Next we consider the accuracy of this determination.

6 - Maximum-Likelihood Error, One Parameter

It can be shown that for large N L(a) approaches a Gaussian distribution. To this
approximation (actually the above example is always Gaussian in a), we have:

L(a) ∝  exp 



 −− 2*)(

2
aa

h

where 
h

1
 is the RMS spread of a about a*:

w = - *)(
2

aa
h

− 2 + const.

a
w

∂
∂

= - h (a - a*)

2

2

a
w

∂
∂

= - h

Since ∆a as defined in Eq. (3) is 
h

1
, we have:

∆a = 
2
1

2

2 −









∂
∂

−
a
w

Maximum-likelihood Error (7)
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It is also proven in Cramer[5] That no method of estimation can give an error smaller than
that of  Eq. (7) (or its alternate form Eq. (8)). Eq. (7) is indeed very powerful and important.
Let us now apply this formula to determine the error associated with a* (Eq. (6)). We
differentiate Eq. (5) with respect to a. The answer is:

∑
=

−=
∂
∂ N

i ia
w

1
22

2 1
σ

Using this in Eq. (7) gives:

∑
=

=∆
N

i i

a
1

2

1
σ

                             Law of Combination of Errors

This formula is commonly known as the "Law of Combination of Errors" and refers to
repeated measurements of the same quantity which are Gaussian-distributed with "errors"
σi.

In many actual problems, neither a*  nor ∆a may be found analytically. In such cases the
curve L(a) can be found numerically by trying several values of a  and using Eq.(2) to get the
corresponding values of L(a). The complete function is then obtained by using a smooth

curve through the points. If L(a) is Gaussianlike, 
2

2

a
w

∂
∂

is the same everywhere. If not, it is

best to use the average:

2

2

a
w

∂
∂

= 
∫

∫ ∂
∂

Lda

Lda
a
w

)(
2

2

A plausibility argument for using the above average goes as follows; if the tails of L(a) drop

off more slowly than Gaussian tails, 
2

2

a
w

∂
∂

is smaller than:

*
2

2

aa
a
w

=
∂
∂

Thus, use of the average second derivative gives the required larger errors.
Note that use of Eq. (7) for ∆a depends on having a particular experimental result before the
error can be determined. However, it is often important in the design of experiments to be

                                                
[5] H. Cramer, “Mathematical Methods of Statistics”,

Princeton University Press, 1946.
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able to estimate in advance how many data will be needed in order to obtain a given
accuracy. We shall now develop an alternate formula for the maximum-likelihood error,
which depends only on knowledge of f(a;x). Under these circumstances we wish to

determine 
2

2

a
w

∂
∂

averaged over many repeated experiments consisting of N events each. For

one event we have:

2

2

a
w

∂
∂

= ∫ ∂
∂

fdx
a

f
2

2 )log(

for N events:

2

2

a
w

∂
∂

= N ∫ ∂
∂

fdx
a

f
2

2 )log(

This can be put in the form of a first derivative as follows:

2

2 )log(
a

f
∂

∂
= 








∂
∂

∂
∂

a
f

fa
1

= - 
2

2

1








∂
∂
a
f

f
+ 

2

21
a

f
f ∂

∂

∫ ∂
∂

fdx
a

f
2

2 )log(
= - ∫ 








∂
∂

dx
a
f

f

21
+ ∫ ∂

∂
dx

a
f
2

2

The last integral vanishes if one integrates before the differentiation because ∫ dxxaf );( = 1.

Thus:

2

2

a
w

∂
∂

= - N ∫ 







∂
∂

dx
a
f

f

21

and Eq. (7) leads to[6]:

                                                

[6] Example 1: Assume in the µ-e decay distribution function, f(a;x) = 
2

1 ax+
, that

3
1

0 −=a . How many µ-e decays are needed to establish a to a 1 % accuracy (i. e.,

100=
∆a
a

) ?

a
f

∂
∂

= 
2
x

;  ∫
−









∂
∂1

1

2
1

dx
a
f

f
 = ( )∫

− +

1

1

2

12
dx

ax
x

 = 



 −

−
+

a
a
a

a
2

1
1

log
2

1
3
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∆a = 
2
1

211




















∂
∂

∫ dx
a
f

fN
Maximum-likelihood Error (8)

See Example 1.

7 - Maximum-Likelihood Errors, M-Parameters, Correlated Errors

When M parameters are to be determined from a single experiment containing N events, the
error formulas of the preceding section are applicable only in the rare case in which the
errors are uncorrelated.
Errors are uncorrelated only for: *)*)(( jjii aaaa −− = 0 for all cases with i ≠ j.

For the general case we Taylor-expand w(a) about a*:

w(a) = w(a*) + ∑∑∑
= ==

−
∂
∂ M

a

M

b
baaba

a

M

a a

H
a
w

a
1 11 2

1
*

βββ  + ...

where   βi = ai - ai*    and:

Hij = - 
**

2

jjii aaaaji aa
w

==
∂∂

∂ Covariance Matrix (9)

The second term of the expansion vanishes because 
aa

w
∂
∂

= 0 are the equations for aa*:

∑∑
= =

−=
M

a

M

b
baabHawaL

1 1

*

2
1

)()(log ββ  + ...

                                                                                                                                           

∆a = 
a

a
a

a
N 2

1
1

log

21 3

−
−
+

Note that    ( )aa ∆>−− 0lim  = 
N
3

For        a = - 
3
1

− ;           ∆a = 
N
8.2

For this problem       ∆a = 
300

1
;          N = 2.52 x 105 events
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Neglecting the higher-order terms, we have:









−= ∑∑

= =

M

a

M

b
baabHCaL

1 12
1

exp)( ββ

(an M-dimensional Gaussian surface). As before, our error formulas depend on the
approximation that L(a) is Gaussianlike in the region ai ≈ ai*. As mentioned in Section 4, if
the statistics are so poor that this is a poor approximation, then one should merely present a
plot of L(a).

According to Eq. (9), H is a symmetric matrix. Let U be the unitary matrix that diagonalizes
H:

U • H • U-1 = 

Mh

h
h

...00
0...00
0...0
0...0

2

1

= h     where          TU = U-1 (10)

Let β  = (β1;β2;...;βM )      and      γ = β  • U-1. The element of probability in  the β-space
is:

dMp = C exp 



 ••− TUHU )()(

2
1

γγ dMβ

Since |U| = 1 is the Jacobian relating the volume elements dMβ  and dMγ, we have:

dMp = C exp 







− ∑ 2

2
1

aah γ  dMγ

Now that the general M-dimensional Gaussian surface has been put in the form of the
product of independent one-dimensional Gaussians we have[7]:
                                                
[7] Proof: We must evaluate the following integral:

∫ ∑
∞

∞− =








−= γγγγγγ M

M

i
iibaba dhC

1

2

2
1

exp

which can be translated into:















−














−














−= ∫∫∏ ∫

∞

∞−

∞

∞−≠

∞

∞−
bbbbaaaa

bai
iiiba dhdhdhC γγγγγγγγγγ 22

,

2

2
1

exp
2
1

exp
2
1

exp
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1−= aabba hδγγ

Then:

∑∑
= =

=
M

a

M

b
bjaibaji UU

1 1

γγββ

∑
=

−−=
M

a
ajaai UhU

1

11

( )( )ijUhU
11 −− ••=

According to Eq. (10), H = U-1 • h • U, so that the final result is:

*)*)(( jjii aaaa −−  = (H-1)ij    where    Hij = - 
ji aa

w
∂∂

∂ 2

Maximum-likelihood Errors, M parameters I

Averaged over repeated experiments:

ijH = N ∫ 










∂
∂









∂
∂

dx
a
f

a
f

f ji

1
(11)

                                                                                                                                           

Since iii dh γγ∫
∞

∞−







− 2

2
1

exp  = 1 for i ≠ a,b, and jjjj dh γγγ∫
∞

∞−







− 2

2
1

exp  = 0 for j = a,b,

the result is 0=baγγ  for a ≠ b.

If a = b then:















−














−= ∫∏ ∫

∞

∞−≠

∞

∞−
aaaa

bai
iiiaa dhdhC γγγγγγγ 22

,

2

2
1

exp
2
1

exp

And since ∫
∞

∞−







− aaaa dh γγγ 22

2
1

exp  = 
ah

1
,        

a
aa h

1
=γγ

Therefore              1−= aabba hδγγ
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An example of use of the above quoted formulas is given in[8].

                                                
[8] Example 2: Assume that the ranges of monoenergetic particles are Gaussian-distributed
with mean range a1 and straggling coefficient a2 (the standard deviation). N particles having
ranges Nxxx ;...;; 21 are observed. Find a1* , a2*  and their errors.

Then:

( )
∏

= 



















 −
−=

N

i

i

a
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a
aaL

1
2
2

2
1

2
21 2

exp
2
1

),(
π

( )
)2log()log(

22
1

2
1

2
2

2
1 πNa

a
ax

w
N

i

i −−
−

−= ∑
=

( )
∑

=

−
=

∂
∂ N

i

i

a
ax

a
w

1
2
2

1

1

( )∑
=

−−=
∂
∂ N

i
i a

N
ax

aa
w

1 2

2
13

22

1

The maximum-likelihood solution is obtained by setting the above two equations equal to
zero:

N

x
a

N

i
i∑

== 1*
1

( )∑
=

−
=

N

i

i

N
ax

a
1

2
1*

2

The reader may remember a standard-deviation formula in which N is replaced by )1( −N :

( )∑
= −

−
=

N

i

i

N
ax

a
1

2
1

2 1

This is because in this case the most probable value, a2*, and the mean a2, do not occur at
the same place. Mean values of such quantities are studied in Section 16. The matrix H is
obtained by evaluating the following quantities at a1* and a2*

2
2

2
1

2

a
N

a
w

−=
∂
∂

   ;   ( )
2
21

2
14

2
2
2

2 3
a
N

ax
aa

w N

i
i +−−=

∂
∂ ∑

=

+   ;    ( ) 0
2

1
13

221

2

=−−=
∂∂

∂ ∑
=

N

i
i ax

aaa
w



CLNS 82/511

- 14 -

A rule for calculating the inverse matrix 1−H  is:

Hij
-1
 = (-1)

i+j
 • 

H
Hij th

oftdeterminan
ofminor

If we use the alternate notation V for the error matrix 1−H , then whenever H  appears, it

must be replaced with 1−V ; i.e., the likelihood function is:







 ••−= − TVaL ββ 1

2
1

exp)( (11a)

We note that the error of the mean is σ
N
1

 where 2a=σ  is the standard deeviation. The

error on the determination of σ is 
N2

σ

Correlated Errors

The matrix *)*)(( jjiiij aaaaV −−=  is defined as the Error Matrix (also called the

Covariance Matrix of a). In Eq. (11) we have shown that 1−= HV  where:

                                                                                                                                           

when a1 = a1*,

H = 



















2
2

2
2

*
2

0

0
*

a
N

a
N

           and          H-1= 



















N
a

N
a

2
*

0

0
*

2
2

2
2

According to Eq. (11), the errors on a1 and a2 are the square roots of the diagonal elements
of the error matrix H-1:

N
a

a
*2

1 =∆ and              
N

a
a

2
*2

2 =∆

where the last is sometimes called the "error of the error".
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Hij = - 
ji aa

w
∂∂

∂ 2

The diagonal elements of V  are the variances of the a’s. If all the off-diagonal elements are
zero, the errors in a are uncorrelated as in Example 2. In this case contours of constant w
plotted in (a1, a2) space would be ellipses as shown in Fig. 2a. The errors in a1 and a2

would  be the semi-major axes of the contour ellipse where w has dropped by 
2
1

 unit from

its maximum-likelihood value. Only in the case of uncorrelated errors is the RMS error

2
1

−
=∆ ijj Ha  and then there is no need to perform a matrix inversion.

Fig. 2. Contours of constant w as a function of a1 and a2. Maximum likelihood solution is at
*ww= . Errors in a1 and a2 are obtained from ellipse where ( )2

1*−= ww .

(a) Uncorrelated errors
(b) Correlated errors. In either case ( )11

1
11

2
1

−==∆ HVa and ( )22
1

22
2
2

−==∆ HVa . Note that

it would be a serious mistake to use the ellipse “halfwidth” rather than the extremum for
∆a.

In the more common situation there will be one or more off-diagonal elements to H  and
the errors are correlated (V  has off-diagonal elements). In this case (Fig. 2b) the contour

ellipses are inclined to the a1, a2 axes. The RMS spread is 2
1

111 Va =∆  which can be shown to
be the extreme limit of the ellipse projected on the a1 axis (the ellipse “halfwidth” axis is

2
1

11

−
H  which is smaller). In cases where Eq. (11) cannot be evaluated analytically, the a*’s
can be found numerically and the errors in a can be found by plotting the ellipsoid where w

is 
2
1

 unit less than w*. The extremums of this ellipsoid are the RMS errors in the a’s. One

should allow all the aj to change freely and search for the maximum change in ai which

makes 
2
1* −= ww . This maximum change in ai is the error in ai and is 2

1

iiV .

8 - Propagation of Errors: the Error Matrix

                 (a)

0 a1* a1

a2*

a2

w*

w* - 1/2

∆a2

∆a1

                 (b)

0 a1* a1

a2*

a2

w*

w* - 1/2

∆a2

∆a1

(H11)-1/2

∆a1 = ((H
-1
)11)

1/2
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Consider the case in which a single physical quantity, y, is some function of the a's: y=y (a
1
,

..., a
M
) . The "best" value for y  is then y* = y (ai*). For example y could  be the path radius

of an electron circling in a uniform magnetic fieldwhere the measured quantities are τ=1a ,
the period of revolution, and va =2 , the electron velocity. Our goal is to find the error in y
given the error in a.
To first order in (ai - ai*) we have:

y - y* = )( *

1
aa

M

a a

aa
a
y

−
∂
∂∑

=

2*)( yy − = ∑∑
= =

−−
∂
∂

∂
∂M

a

M

b
bbaa

ba

aaaa
a
y

a
y

1 1

** ))((

(∆y)rms = ∑∑
= =

−

∂
∂

∂
∂M

a

M

b
ab

ba

H
a
y

a
y

1 1

1)( (12)

A well known special case of Eq. (12), which holds only when the variables are completely
uncorrelated, is:

(∆y)rms = ( )∑
=

∆







∂
∂M

a
a

a

a
a
y

1

2
2

In the example of orbit radius in terms of τ and v this becomes:

( ) ( ) ( ) ( )2
2

2
2

2

2
2

2
2

2

44
v

v
v

v
RR

R ∆+∆=∆







∂
∂

+∆







∂
∂

=∆
π

τ
τ

π
τ

τ

in the case of uncorrelated errors. However, if v∆∆τ  is non-zero as one might expect, then
Eq. (12) gives:

( ) ( ) v
v

v
v

R ∆∆













+∆+∆=∆ τ

π
τ

ππ
τ

τ
π 22

2
44

2
2

2
2

2

2

It is a common problem to be interested in M physical parameters y
1
, ...., y

M
, which are

known functions of the ai. If the error matrix H-1, of the ai is known, then we have:

)*)(*( jjii yyyy −− = ∑∑
= =

−

∂

∂

∂
∂M

a

M

b
ab

b

j

a

i H
a

y

a
y

1 1

1)( (13)
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In some such cases the 
a

i

a
y

∂
∂

cannot be obtained directly, but the 
i

a

y
a

∂
∂

are easily

obtainable[9]. Then:

a

i

a
y

∂
∂

= (J
 -1)ia, where Jij = 

j

i

y
a

∂
∂

9 - Systematic Errors

"Systematic effects" is a general category which includes effects such as background,
selection bias, scanning efficiency, energy resolution, angle resolution, variation of counter
efficiency with beam position and energy, dead time, etc. The uncertainty in the estimation of
such a systematic effect is called a "systematic error". Often such systematic effects and their
errors are estimated by separate experiments designed for that specific purpose. In general
the maximum-likelihood method can be used in such an experiment to determine the
systematic effect and its error. Then the systematic effect and its error are folded into the

                                                
[9] Example 3: Suppose one wishes to use radius and acceleration to specify the circular
orbit of an electron in a uniform magnetic field; i. e., y1 = r and y2 = a. Suppose the original
measured quantities are a1 = τ = (10 ± 1) µs and a2 = v = (100 ± 2) km/s.Also since the
velocity measurement depended on the time measurement, there was a correlated error

v∆∆τ  = 1.5 x 10-3 m. find r, ∆r, a, ∆a.

Since 
π
τ

2
v

r = = 0.159 m and 
τ
πv

a
2

=  = 6.28 x 1010 m/s2 we have:

π2
21

1

aa
y =  and 

1

2
2 2

a
a

y π= . Then 
π2
2

1

1 a
a
y

=
∂
∂

, 
π2
1

2

1 a
a
y

=
∂
∂

,

2
1

2

1

2 2
a
a

a
y π

=
∂
∂

, 
12

2 2
aa

y π
=

∂
∂

. The measurement errors specify the error matrix as:

V = 











−

−−

2

263

3212

104105.1

105.110

s
mxmx

mxs

Eq. (13) gives:

( )

24
222

2

122112

2

22

2
1

12
12

11

2
22

1

1039.3
424

222
2

2

mxVV
v

V
v

V
a

V
aa

V
a

y

−=++=

=





+














+






=∆

π
τ

π
τ

π

ππππ

Thus r = (0.159 ± 0.0184) m
For y2, Eq. (13) gives:

( ) 4

219
22

2

1
12

1
2
1

2
11

2

2
1

22
2 1092.2

222
2

2
s

mxV
a

V
aa

a
V

a
a

y =







+
















+








−=∆

ππππ

Thus a = (6.28 ± 0.54) x 1010 m/s2.
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distribution function of the main experiment. Ideally, the two experiments can be treated as
one joint experiment with an added parameter a

M+1
  to account for the systematic effect.

In some cases a systematic effect cannot be estimated apart from the main experiment.
Example 2 can be made into such a case. Let us assume that among the beam of
monoenergetic particles there is an unknown background of particles uniformly distributed in
range. In this case the distribution function would be:

f(a
1
, a

2
, a

3
; x) = 













+






 −−
32

2

2
1

2 2
)(

exp
2
11

a
a

ax
aC π

where

C(a
1
, a

2
, a

3
) = ∫

max

min

x

x

fdx

The solution a*
3  is simply related to the percentage of background. The systematic error is

obtained using Eq. (11).

10 - Uniqueness of Maximum-Likelihood Solution

Usually it is a matter of taste what physical quantity is chosen as a..
For example, in a lifetime experiment some workers would solve for the lifetime, τ*, while
others would solve for λ*, where λ = 1/τ. Some workers prefer to use momentum, and
others energy, etc. Consider the case of two related physical parameters λ and a. The

maximum-likelihood solution for a is obtained from 
a
w

∂
∂

= 0. The maximum-likelihood

solution for λ is obtained from 
λ∂

∂w
= 0. But the we have:

λ∂
∂

∂
∂ a

a
w

= 0,          and            
a
w

∂
∂

= 0

Thus the condition for the maximum-likelihood solution is unique and independent of the
arbitrariness involved in chioce of physical parameter. A lifetime result τ* would be related

to the solution λ* by τ* = 
*

1
λ

.

The basic shortcoming of the maximum-likelihood method is what to do about the a priori
probability of a . If the a priori probability of a  is G(a) and the likelihood function obtained
for the experiment alone is H(a), then the joint likelihood function is:

L(a) = G(a) H(a)
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w = ln G + ln H

a
w

∂
∂

= 
a
G

∂
∂ ln

+ 
a
H

∂
∂ ln

a
aH

∂
∂ *)(ln

= - 
a

aG
∂

∂ *)(ln

give the maximum likelihood solution. In the absence of any a priori knowledge the term on
the right hand-side is zero. In other words, the standard procedure in the absence of any a
priori information is to use an a priori distribution in which all values of a  are equally
probable. Strictly speaking, it is impossible to know a "true" G(a), because it in turn must
depend on its own a priori probability. However, the above equation is useful when G(a) is
the combined likelihood function of all previous experiments and H(a) is the likelihood
function of the experiment under consideration.

There is a class of problems in which one wishes to determine an unknown distibution in a ,
G(a), rather than a single value a

0
 .For example, one may whish to determine the momentum

distribution of cosmic ray muons. Here one observes:

L(G ) = ∫ daxaHaG );()(

where H(a;x) is known from the nature of the experiment and G(a) is the function to be
determined. This type of problem is discussed in Reference[10].

11 - Confidence Intervals and Their Arbitrariness

So far we have worked only in terms of relative probabilities and RMS values to give an
idea of he accuracy of the determination a  = a* . One can also ask the question, "What is
the probability that a  lies between two certain values such as a'  and a'' ?". This is called a
confidence interval.

P(a' < a < a'') = 

∫

∫
∞

∞−

Lda

Lda
a

a

''

'

                                                
[10] M. Annis, W. Cheston, H. Primakoff, "On Statistical Estimation in Physics",

Revs. Modern Phys. 25 (1953), 818
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Unfortunately such a probability depends on the arbitrary choice of what quantity is chosen
for a . To show this consider the area under the tail of L(a) in the Fig. 3.

Fig. 3. Shaded area is P(a > a’), sometimes called the confidence limit of a’.

P(a > a') = 

∫

∫
∞

∞−

∞

Lda

Lda
a '

If λ = λ(a) had been chosen as the physical parameter instead, the same confidence interval
is:

P(λ > λ') = 

∫

∫
∞

∞−

∞

λ

λ
λ

Ld

Ld
' =   

∫

∫
∞

∞−

∞

∂
∂

λ

λ

Ld

da
a

L
a' ≠   P(a > a')

Thus, in general, the numeric value of a confidence interval depends on the choice of the
physical parameter. This is also true to some extent in evaluating ∆a . Only the maximum-
likelihood solution and the relative probabilities are unaffected by the choice of a . For
Gaussian distributions, confidence intervals can be evaluated by using tables of the
probability integral. Tables of cumulative binomial distributions and cumulative Poisson
distributions are also available. Appendix V contains a plot of the cumulative Gaussian
distribution.

12 - Binomial Distribution

Here we are concerned with the case in which an event must be one of two classes, such as
up or down, forward or back, positive or negative, etc. Let p  be the probability for an event
of Class 1. Then (1 - P ) is the probability for Class 2, and the joint probability for observing
N

1
 events in Class 1 out of N total events is:

0 a’ a

L(a) Fig. 3
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P(N
1
, N) = 

)!(!
!

11 NNN
N

−
p 1N (1 – p) 1NN −   The Binomial Distribution (14)

Note that     ( )[ ] 1)1),(
0

=−+=∑
=

N
N

j

ppNjP     . The factorials correct for the fact that we

are not interested in the order in which the events occurred. For a given experimental result
of N

1
 out of N events in Class 1, the likelihood function L(p) is then:

L/(p) = 
)!(!

!

11 NNN
N

−
 p 1N (1 – p) 1NN −

w = N
1
 ln(p) + (N - N

1
) ln(1 - p) + const.

p
w

∂
∂

= 
p

N 1  - 
p
NN

−
−

1
1 (15)

2

2

p
w

∂
∂

= - 
2
1

p
N

 - 
2
1

)1( p
NN

−
−

(16)

From Eq. (15) we have:

p* = 
N
N1 (17)

From (16) and (17):

2*)( pp − = 

2
1

2
1

*)1(*

1

p
NN

p
N

−
−

+

∆p = 
N

pp *)1(* −
(18)

The results, Eqs. (17) and (18), also happen to be the same as those using direct
probability[11]. Then:

                                                
[11] Example 4: In Example 1 on the µ - e decay angular distribution we found that

N
a

3
=∆ is the error on the asymmetry parameter a .

Suppose that the individual cosine xi of each event is not known. In this problem all we
know is the number up vs. the number down. What is then ∆a? Let p be the probability of a
decay in the up emisphere; then we have:
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1N = p N

and

2
1 )( NN − = N p (1 - p)

13 - Poisson Distribution

A common type of problem which falls into this category is the determination of a cross
section or a mean free path. For a mean free path λ, the probability of getting an event in an

interval dx  is 
dx
λ

 . Let P(0,x) be the probability of getting no events in a length x . Then we

have:

dP(0,x) = - P(0,x) 
λ
dx

ln P(0,x) = - 
λ
x

+ const.

P(0,x) = λ
x

e
−

  (at x = 0, P(0,x) = 1, the same as for the radioactive decay law) (19)

Let P(N,x) be the probability of finding N events in a length x . An element of this
probability is the joint probability of N events at dx

1
, ...., dx

N
 times the probability of no

events in the remaining length:

                                                                                                                                           

∫
+

=
1

0 2
1

dx
ax

p  = 
2

2
1

a
+

 = 
42

1 a
+       )1( p−  = 

42
1 a

−

By Eq. (18), remembering that 
4
1

=
∂
∂
a
p

,

( )
N

pp
a

** 1
4

−
=∆









−=∆

4
1

4 2*a
N

a

For small a this is 
N

a
4

=∆  as compared to 
N

a
3

=∆  when the full information is used.
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dNP(N,x) = 






∏
=

N

i

idx

1 λ
λ
x

e
−

(20)

The entire probability is obtained by integrating over the N-dimensional space. Note that the
integral:

NN

i

x
i xdx







=∏∫

= λλ1 0

does the job except that the particular probability element in Eq. (20) is swept through N!
times. Dividing by N! gives:

P(N,x) = 
!

)(

N

x N

λ λ
x

e
−

      The Poisson distribution (21)

As a check, note:

∑
∞

=

=
0

),(
j

xjP = 




























∑
∞

=

−

0 !j

i

x

j

x

e
λλ  = λ

x

e
−

λ
x

e = 1

N = λλ x

N

N

e
N

x

N
−∞

=
∑









1 !
= (

λ
x

)

Likewise it can be shown that  NNN =− 2)( .

Equation (21) is often expressed in terms of N :

P(N, N ) = 
!N

N
N

Ne −                the Poisson distribution (22)

This form is useful in analyzing counting experiments. Then the "true" counting rate is N .

We now consider the case in which, in a certain experiment, N events were observed. The
problem is to determine the maximum-likelihood solution for a = N  and its error:
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L(a) = 
!N

a N
ae −

w = N ln a - a - ln N!

a
w

∂
∂

= 
a
N

- 1

2

2

a
w

∂
∂

= - 
2a

N

Thus we have:

a* = N        and by Eq. (7)      ∆a = 
N
a

= N

In a cross section determination, we have a = ρ x σ, where ρ is the number of target nuclei
per cm3 and x  is the total path length. Then:

σ* = 
x

N
ρ

and          
*σ

σ∆
= 

N
1

In conclusion we note that a* ≠ a

a  = 

∫

∫
∞

∞

0

0

)(

)(

daaL

daaaL
= 

∫

∫
∞

−

∞
−+

0

0

1

daea

daea

aN

aN

= 
!

)!1(
N

N +
= N + 1

14 - Generalized Maximum-Likelihood Method

So far we have always worked with the standard maximum-likelihood formalism, whereby
the distribution functions are always normalized to unity. Fermi has pointed out that the
normalization requirement is not necessary so long as the basic principle is observed: namely,
that if one correctly writes down the probability of getting his experimental result, then this
likelihood function gives the relative probabilities of the parameters in question. The only
requirement is that the probability of getting a particular result be correctly written. We shall
now consider the general case in which the probability of getting an event in dx is F(x) dx,
and:

∫
max

min

x

x

Fdx = )(aN
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is the average number of events one would get if the same experiment were repeated many
times. According to Eq. (19), the probability of getting no events in a small finite interval ∆x
is:

P(0,∆x) = exp 







− ∫

∆+ xx

x

Fdx

The probability of getting no events in the entire interval xmin < x < xmax is the product of
such exponentials or:

P(0,(xmax - xmin)) = exp










− ∫

max

min

x

x

Fdx = Ne −

The element of probability for a particular experimental result of N events occurring at x
=x

1
,.. .,x

N
 is then:

dNp  = ∏
=

−
N

i
ii

N dxxFe
1

)(

Thus we have:

L(a) = ∏
=

−
N

i
i

aN xaFe
1

)( );(

and:

w(a) = ∫∑ −
=

max

min1

);();(ln
x

x

N

i
i dxxaFxaF

The solutions ai = a*i are still given by the M simultaneous equations:

ia
w

∂
∂

= 0

The errors are still given by:

)*)(*( jjii aaaa −−  = (H
-1

 )
ij

where:
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H ij = - 
ji aa

w
∂∂

∂ 2

The only change is that N no longer appears explicitly in the formula:

ji aa
w
∂∂

∂
−

2

= ∫ 










∂
∂









∂
∂

dx
a
F

a
F

F ji

1

A derivation similar to that used for Eq. (8) shows that N is already taken care of in the
integration over F(x).

In a private communication George Backus has proven, using direct probability, that the
Maximum-Likelihood Theorem also holds for this generalized maximum-likelihood method
and that in the limit of large N there is no method of estimation that is more accurate. Also
see Sect. 9.8 of [12].

In the absence of the generalized maximum-likelihood method our procedure would have
been to normalize F(a;x) to unity by using:

f(a;x) = 
∫ Fdx

xaF );(

For example, consider a sample containing just two radioactive species, of lifetimes a1 and
a2. Let a3 and a4 be the two initial decay rates. Then we have:

F(ai;x) = a3 1a
x

e
−

+ a4 2a
x

e
−

where x  is the time. The standard method would then be to use:

f(a;x) = 
251

5
21

aaa
eae a

x
a
x

+
+

−−

with a5 = 
3

4

a
a

which is normalized to one. Note that the four original parameters have been reduced to

three by using a5 = 
3

4

a
a

. Then a3 and a4 would be found by using the auxiliary equation:

                                                
[12] A. G. Frodesen, O. Skjeggestad, H. Tofte, “Probability and Statistics in Particle
Physics” (Columbia University Press, 1979) ISBN 82-00-01906-3. The title is misleading,
this is an excellent book for physicists in all fields who whish to pursue the subject more
deeply than is done in these notes.
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∫
∞

0

Fdx  = N

the total number of counts. In this standard procedure the equation:

)( iaN  = N

must always hold. However, in the generalized maximum-likelihood method these two
quantities are not necessarily equal. Thus the generalized maximum-likelihood method will
give a different solution for the ai, which should, in principle, be better.

Another example is that the best value for a cross section σ is not obtained by the usual
procedure of setting ρσL = N (the number of events in a path length L). The fact that one
has additional a priori information such as the shape of the angular distribution enables one to
do a somewhat better job of calculating the cross section.

15 - The Least-Squares Method

Until now we have been discussing the situation in which the experimental result is N events
giving precise values x

1
, ...., x

N  where the xi  may or may not, as the case may be, be all
different.
From now on we shall confine our attention to the case of p measurements (not p events) at
the points x

1
, ...., x

p
 . The experimental results are (y1 ± σ1), ...., (yp ± σp). One such type

of measurement is where each measurement consists of Ni events. Then yi =  Ni and is

Poisson-distributed with σi = iN . In this case the likelihood function is:

)(

1 !
)(

i
i

xy
p

i i

N
i e

N
xy

L −

=
∏=

and

∑∑
==

+−=
p

i
i

p

i
ii xyxyNw

11

)())(ln( const.

We use the notation );( xay i for the curve that is to be fitted to the experimental points. The
best-fit curve corresponds to ai  = a*i . In this case of Poisson-distributed points, the
solutions are obtained from M simultaneous equations:

i

a
p

a a

a
p

a i

a

a
xy

xy
N

a
xy

∂
∂

=
∂

∂ ∑∑
==

)(
)(

)(

11
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0 x

y

x1

y(x)

y1

x2 x3 x4 x5 x6 x7

Fig. 4

σ1

σ7σ2

Fig. 4. ( )xy  is the function of known shape to be fitted to the 7 experimental points.
If all the Ni >> 1, then it is a good approximation to assume each yi is Gaussian-distributed
with standard deviation σi (it is better to use iN  rather than Ni for 2

iσ  where iN  can be

obtained by integrating ( )xy  over the i-th interval). Then one can use the famous least
squares method.
The remainder of this section is devoted to the case in which the yi  are Gaussian-distributed
with standard deviation σi (see Fig. 4). We shall now see that the least-squares method is
mathematically equivalent to the maximum-likelihood method. In this Gaussian case the
likelihood function is:








 −
−=∏

=
2

2

1 2
))((

exp
2

1

a

aa
p

a a

xyy
L

σσπ
(23)

∑
=

−−=
p

a
aaSaw

1

)2ln()(
2
1

)( σπ

where

( )∑
= 










 −
=

p

a a

aa xyy
aS

1
2

2

2
)(

)(
σ

(24)

The solutions ai  = a*i  are given by minimizing S(a)  (maximizing w ):

ia
aS

∂
∂ )(

= 0 (25)
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This minimum value of S  is called S* , the least-squares sum.The values of ai which minimize
are called the least-squares solutions.Thus the maximum-likelihood and least-squares
solutions are identical. According to Eq. (11), the least squares errors are:

*)*)(( jjii aaaa −−  = (H 1−
ij ),   where   H ij =  

ji aa
S

∂∂
∂ 2

2
1

Let us consider the special case in which );( xay i is linear in the ai:

∑
=

=
M

a
aai xfaxay

1

)();(

(Do not confuse this f(x) with the f(x) on page 2)
Then:

)(
)(

2
1

2
1

ai

p

a a

M

b
abba

i

xf
xfay

a
S ∑

∑
=

=


















−

−=
∂
∂

σ
(26)

Differentiatiing with respect to aj gives:

∑
=

=
p

a a

ajai
ij

xfxf
H

1
2

)()(

σ
(27)

Define:

∑
=

=
p

a a

aja
i

xfy
U

1
2

)(

σ
(28)

Then:









−−=

∂
∂ ∑

=

M

b
bibi

i

HaU
a
S

1

2

In matrix notation the M simultaneous equations giving the least-squares solution are:

0 = u - a* • H (29)

a* = u • H-1
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is the solution for the a*’s. The errors in a are obtained using Eq. (11). To summarize:

Equation (30) is the complete procedure for calculating the least-squares solutions and their
errors. Note that  even though this procedure is called "curve-fitting" it is never necessary to
plot any curves. Quite often the complete experiment may be a combination of several
experiments in which several different curves (all functions of the ai ) may jointly be fitted.
Then the S-value is the sum over all the points on all the curves. Note that since w(a*)

decreases by 
2
1

 unit when one of the aj has the value (a*j + ∆aj), the S-value must increase

by one unit. That is:

( ) 1,.....,,...., ****
1 +=∆+ SaaaaS Mjj

See Examples 5[13], 6[14], 7[15].

                                                
[13]  Example 5: )(xy  is known to be of the form )(xy  = a1 +  a2x. There are p
experimental measurements ( yj ± σ).
Using Eq. (30) we have f1 = 1, f2 = x,

H = 



















∑∑

∑

2

2

2

22

σσ

σσ
aa

a

xx

xp

, H-1 = ( ) 











−
−

− ∑
∑∑

∑ ∑ px
xx

xxp a

aa

aa

2

22

2σ

( )22

2
*
1

∑∑
∑∑∑∑

−

−
=

aa

aaaaa

xxp

yxxxy
a         ( )22

*
2

∑∑
∑∑∑

−

−
=

aa

aaaa

xxp

yxyxp
a

These are the linear regression formulas which are programmed into many pocket
calculators. They should not be used in those cases where the σi are not all the same. If the
σi are all equal, the errors are
( ) ( ) ( ) ( )22

12
211

12
1

−− =∆=∆ HaHa               or

( )22

2

1

∑∑
∑

−
=∆

aa

a

xxp

x
a σ                        

( )222

∑∑ −
=∆

aa xxp

p
a σ

If ∑
=

=
M

a
aai xfaxay

1

)();(

( )∑∑
= =

−=
M

a

p

b
ai

b

bab
i H

xfy
a

1 1

1
2

* )(
σ

*)*)(( jjii aaaa −− = H 1−
ij  where:

Hij = ∑
=

p

a a

ajai xfxf

1
2

)()(

σ
                                                                                     (30)
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[14] Example 6: The curve to be fitted is known to be a parabola. There are four
experimental points at x = -0.6, -0.2, 0.2, 0.6. The experimental results are 5 ± 2, 3 ± 1, 5
± 1, and 8 ± 2. Find the best-fit curve.

2
321)( xaxaaxy ++= ;  2

321 ,,1 xfxff ===

∑
=

=
4

1
211

1

a a

H
σ

;   ∑
=

=
4

1
2

2

22
a a

ax
H

σ
;   ∑

=

=
4

1
2

4

33
a a

ax
H

σ

∑
=

=
4

1
212

a a

ax
H

σ
;   ∑

=

==
4

1
2

2

2213
a a

ax
HH

σ
;   ∑

=

=
4

1
2

3

23
a a

ax
H

σ

H = 
















068.0026.0
026.00

26.005.2

     H-1 = 
















−

−

418.24054.2
0847.30

54.20664.0

 = V

(the error matrix)
u = [ ]11.25 0.85 1.49  

a1* = 3.685      ;       ∆a1 = 0.815       ;       21 aa ∆∆  = 0

a2* = 3.27        ;       ∆a2 = 1.96         ;       31 aa ∆∆ = -2.54

a3* = 7.808      ;       ∆a3 = 4.94         ;       32 aa ∆∆ = 0

)(xy = (3.685 ± 0.815) + (3.27 ± 1.96)x + (7.808 ± 4.94)x2

is the best-fit curve. This is shown with the experimental points in Fig. 5.
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Least squares when the yi are not independent

Let:

( )( )jjiiij yyyyV −−=

                                                                                                                                           

0

5

10

15

20

-1.5 -1 -0.5 0 0.5 1 1.5X

Y

Fig. 5. This parabola is the least squares fit to the 4 experimental points in Example 6.

[15]  Example 7: In Example 6 what is the best estimate of y at x = 1? What is the error of
this estimate?
Solution: putting x = 1 into the above equation gives

y = 3.685 + 3.27 + 7.808 = 14.763

∆y is obtained using Eq. (12).

23321331122133
2

322
2

211
2

1 222 VffVffVffVfVfVfy +++++=∆

008.50418.24847.3664.0 242 +−+++=∆ xxxy

Setting x = 1 gives: ∆y = 5.137
So at x = 1, y = 14.763 ± 5.137.
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be the error of the y measurements. Now wwe shall treat the more general case where the
off diagonal elements need not be zero; i.e., the quantities yi are not independent. We see
immediately from Eq. (11a) that the log-likelihood function is:

( ) ( ) .
2
1 1 constyyVyyw

T
+−••−−= −

The maximum-likelihood solution is found by minimizing:

( ) ( ) .1 T
yyVyyS −••−= −

where:                                                                   Generalized Least Squares Sum

( )( )jjiiij yyyyV −−=

16 - Goodness of Fit, the χ2 Distribution

The numerical value of the likelihood function at L(a*) can, in principle, be used as a check
whether one is using the correct type of function for f(a;x). If one is using the wrong
function, the likelihood function will be lower in height and of greater width. In principle one
can calculate, using direct probability, the distribution of L(a*) assuming a particular true
f(a0;x). Then the probability of getting an L(a*) smaller than the value observed would be a
useful indication of whether the wrong type of function f(a;x)  had been used. If for a
particular experiment one got the answer that there was one chance in 104 of getting such a
low value of L(a*), one would seriously question either the experiment or the function f(a;x)
that was used.
In practice, the determination of the distribution of L(a*) is usually an impossibly difficult
numerical integration in N-dimensional space. However, in the special case of the least-
squares problem, the integration limits turn out to be the radius vector in p- dimensional
space. In this case we use the distribution of S(a*) rather than of L(a*). We shall first
consider the distribution of S(a0). According to Eqs. (23) and (24) the probability element is:

i
pp yd

S
Pd 



−

∝
2

exp

Note that S = ρ2, where ρ is the magnitude of the radius vector in p-dimensional space. The

volume of a p- dimensional sphere is U ∝ ρp. The volume element in this space is then:

dSSSdpyd
p

p
i

p 2
1

2
1

1 −−
− ∝∝ ρ

 Thus:
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dSeSSdP
Sp

212)(
−−

∝

The normalization is obtained by integrating from S = 0 to S = ∞.

0
212

0
2

0

0

)2(2

1
)( dSeS

p
SdP

Sp

p

−
−

Γ
= (31)

where S0 = S(a0).

This distribution is the well-known χ2 distribution with p degrees of freedom.
χ2 tables of:

P(χ2 = S  ≥ S0) = ∫
∞

0

)(
S

SdP

for several degrees of freedom are in the "Handbook of Chemistry and Physics" and other
common mathematical tables.

From the definition of S (Eq. (24)) it is obvious that 0S = p.

One can show, using Eq. (29), that ( )2
0SS −  = 2p. Hence, one should be suspicious if his

experimental result gives an S-value much greater than:

(p + p2 )

Usually a0 is not known. In such a case one is interested in the distribution of

S* = S(a*)

Fortunately, the distribution is also quite simple. It is merely the χ2 distribution of
)( Mp − degrees of freedom, where p is the number of experimental points, and M is the

number of parameters solved for. Thus we have:

Since the derivation of Eq. (31) is somewhat lengthy, it is given in Appendix II[16][17] .

                                                
[16] Example 8: Determine the χ2 probability of the solution to Example 6.

dP(S*) = χ2 distribution for )( Mp − degrees of freedom

*S = )( Mp −   and  ∆S* = )(2 Mp − (31)
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S* = 
2

2
)6.0(5







 −− y
+ 

2

1
)2.0(3







 −− y
+ 

2

1
)2.0(5







 − y
+ 

2

2
)6.0(8







 − y

S* = 0.674      compared to *S = 4 - 3 = 1

According to the χ2 table for one degree of freedom the probability of getting *S > 0.674 is
0.41. Thus the experimental data are quite consistent with the assumed theoretical shape of:

2
321)( xaxaaxy ++=

[17] Example 9 Combining Experiments: Two different laboratories have measured the
lifetime of the 0

1K  particle to be (1.00 ± 0.01) x 10-10 sec and (1.04 ± 0.02) x 10-10 sec
respectively. Are these results really inconsistent?

According to Eq. (6) the weighted mean is a* = 1.008 x 10-10 sec.(this is also the least
squares solution for 0K

τ ). Thus:

S* = 
2

01.0
008.100.1







 −

+ 
2

02.0
008.104.1







 −

= 3.2                          *S = 2 - 1 = 1

According to the χ2 table for one degree of freedom the probability of getting *S > 3.2 is
0.074. Therefore, according to statistics, two measurements of the same quantity should be
at least this far apart 7.4 % of the time.
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Appendix I: Prediction of Likelihood Ratios

An important job for a physicist who plans new experiments is to estimate beforehand just
how many events will be needed to "prove" a certain hypothesis. The usual procedure is to
calculate the average logarithm of the likelihood ratio. The average logarithm is better
behaved mathematically than the average of the ratio itself.
We have:

∫ 







= dxxf

f
f

NR A
B

A )(log      assuming A is true, (32)

or

∫ 







= dxxf

f
f

NR B
B

A )(log      assuming B is true.

Consider the example (given in Section 3) of the K+ meson. We believe spin zero is true,
and we wish to establish betting odds of 104 to 1 against spin 1. How many events will be
needed for this ? In this case Eq. (32) gives:

log 104 = 4 = - ∫
1

0

)
2
1

log( dx
x

N = - N ∫
1

0

)2log( dxx ;      N = 30

Thus about 30 events would be needed on the average. However, if one is lucky, one might
not need so many events. Consider the extreme case of just one event with 0=x ; R  would
then be infinite and this one single event would be complete proof in itself that  the K+ is spin
zero. The fluctuation (RMS spread) of log(L) for a given N is:

( )



















−








=− ∫ ∫

22
2

loglogloglog dxf
f
f

dxf
f
f

NRR A
B

A
A

B

A
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Appendix II: Distribution of the Least-Squares Sum

We shall define:

the vector 
i

i
i s

y
Z = and the matrix Fij = 

i

ij xf

σ

)(

Note that:

H = TF  • F  by  Eq. (27), Z • F = a* • H     by Eq. (28) and (29) (33)
Then
a* = Z • F • H-1 (34)

( ) ( )[ ]
2

1 1

**
0 ∑∑

= =

−+−=
p

i

M

j
ijjjijji FaaFaZS

where the unstarred a is used for a0.

( ) ( ) ( ) ( )TTTT
p

i

M

j i

ijj

i

i aaFFaaaaFFaZ
xfay

S −•−+−•−+







−=∑∑

= =

****

2

1 1
0 2

)(

σσ

( )( ) ( ) ( )TTTTT aHHZFHHHHaHFZaaFFaFZSS 1111***
0 2 −−−− −−••+−•−•+=

using Eq. (34). The second term on the right is zero because of Eq. (33).

( ) ( )TTTTT aFFZFHHHFFaFZSS −−•−= −− 11
0

*

( )
T

ZZQZZS 





 −−






 −=

≈≈≈≈≈≈

1*        where     
≈≈≈

=• ZFa T   and   TFHFQ 1−= (35)

Note that:

( )( ) ( ) QFHFFHFFHFQ TTT === −−− 1112

If qi is an eigenvalue of Q, it must equal qi2, an eigenvalue of Q2. Thus qi = 0 or 1. The
trace of Q is:

∑ ∑ ==== −−

cba cb
bccb

T
cabcab MITrHHFHFQTr

,, ,

11

Since the trace of a matrix is invariant under a unitary transformation, the trace always equals
the sum of the eigenvalues of the matrix. Therefore M of the eigenvalues of Q are one, and
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(p - M) are zero. Let U be the unitary matrix which diagonalizes Q (and also (1 - Q)).
According to Eq. (35),

S* = η • U • (1 - Q) • U-1• Tη ,    where   η =  (Z - 
≈≈≈
Z ) • U-1

∑
=

=
p

a
aamS

1

2* η            where ma are the eigenvalues of (1 - Q).

∑
−

=

=
Mp

a
aS

1

2* η        since the M nonzero eigenvalues of Q cancel out M of the eigenvalues of 1.

Thus:

( )
a

MpS
deSdP η−−

∝ 2*
*

)(

where S* is the square of the radius vector in (p - M)-dimensional space. By definition (see
Section 16) this is the χ2 distribution with (p - M) degrees of freedom.
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Appendix III: Least-Squares with Errors in Both Variables

Experiments in physics designed to determine parameters in the functional
relationshipbetween quantities x and y involve a series of measurements of x and the
corresponding y. in many casess not only are there measurement errors jyδ for each jy ,

but also measurement errors jxδ for each jx . Most physicists treat the problem as if all the

0=jxδ using the standard least squares method. Such a procedure loses accuracy in the
determination of the unknown parameters contained in the function )(xfy = and it gives
estimates of errorswhich are smaller than the true errors.
The standard least squares method of Section 15 should be used only when all the

jj yx δδ << . Otherwise one must replace the weighting factors
2

1

iσ
in Eq. (24) with

( ) 2=
jδ where:

( ) ( )22
2

2
jj

j
j yx

x
f

δδδ +







∂
∂

= (36)

Eq. (24) then becomes

2

1

)(
∑

=









 −
=

n

j j

jj xfy
S

δ

A proof is given in Reference[18].
We see that the standard least squares computer programs may still be used. In the case
where xaay 21 +=  one may use what are called linear regression programs, and where y is
a polynomial in x one may use multiple polynomial regression programs.

The usual procedure is to guess starting values for 
x
f

∂
∂

and then solve for the parameters

*
ja  using Eq. (30) with jσ  replaced by jδ . The new jx

f








∂
∂

 can be evaluated and the

procedure repeated. Usually only two iterations are necessary. The effective variance

method is exact in the limit that 
x
f

∂
∂

 is constant over the region jxδ . This means it is always

exact for linear regressions[19].

                                                
[18] J. Orear, “Least Squares when Both Variables Have Uncertainties”,

Amer. Jour. Phys., Oct. 1982.

[19] Some statistics books written specifically for physicists are:
H. D. Young, “Statistical Treatment of Experimental Data”, McGraw-Hill Book Co., New

York, 1962
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Appendix IV: Numerical Methods for Maximum Likelihood and Least-Squares
Solutions

In many cases the likelihood function is not analytical or else, if analytical, the procedure for
finding the *

ja  and their errors is too cumbersome and time consuming compared to

numerical methods using modern computers.
For reasons of clarity we shall first discuss an inefficient, cumbersome method called the grid
method. After such an introduction we shall be equipped to go on to a more efficient and
practical method called the method of steepest descent.

The grid method

Fig. 6. Contours of fixed w enclosing the maximum likelihood solution w*.
Fig. 7. A poor statistics case of Fig. 6.

If there are M parameters Maa ......,,1  to be determined one could in principle map out a fine
grid in M-dimensional space evaluating ( )aw  (or ( )aS ) at each point. The maximum value
obtained for a is the maximum likelihood solution *w . One could then map out contour

surfaces of 





 −=

2
1*ww , ( )1* −= ww , etc. This is illustrated for M = 2 in Fig. 6.

In the case of good statistics the contours would be small ellipsoids. Fig. 7 illustrates a case
of poor statistics.

                                                                                                                                           
P. R. Bevington, “Data Reduction and Error Analysis for the Physical Sciences”, McGraw-

Hill Book Co., New York, 1969
W. T. Eadie, D. Drijard, F. E. James, M. Roos, B. Sadoulet, “Statistical Methods in

Experimental Physics”, North Holland Publishing Co., Amsterdam-London, 1971
S. Brandt, “Statistical and Computational Methods in Data Analysis”, secon edition, Elsevier

North-Holland Inc., New York, 1976
S. L. Meyer, “Data Analysis for Scientists and Engineers”, John Wiley and Sons, New

York, 1975
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Here it is better to present the 





 −

2
1*w  contour surface (or the ( )1* +S  surface) than to

try to quote errors on a. If one is to quote errors it should be in the form +− << 111 aaa  where
−
1a  and +

1a  are the extreme excursions the surface makes in 1a  (see Fig. 7). It could be a
serious mistake to quote −

1a  or +
1a  as the errors in 1a .

In the case of good statistics the second derivatives ab
ba

H
aa

w
−=

∂∂
∂ 2

 could be found

numerically in the region near *w .
The errors in the a’s are then found by inverting the H-matrix to obtain the error matrix for
a; i. e.:

*)*)(( jjii aaaa −−  = (H-1)ij

The second derivatives can be found numerically by using:

( ) ( ) ( ) ( )[ ]
ji

jjijiijijjii

ji
aa

aaawaaawaawaaaaw
aa
w

∆∆
∆+−∆+−+∆+∆+

=
∂∂

∂ ,,,,2

In the case of least squares use 
ji

ij aa
S

H
∂∂

∂
=

2

So far we have for the sake of simplicity talked in terms of evaluating ( )aw  over a fine grid
in M-dimensional space. In most cases this would be much too time consuming. A rather
extensive methodology has been developed for finding maxima or minima numerically. In this
appendix we shall outline just one such approach called the method of steepest descent. We
shall show how to find the least squares minimum of ( )aS . (This is the same as finding a
maximum in ( )aw ).

Method of Steepest Descent

At first thought one might be tempted to vary 1a  (keeping the other a’s fixed) until a
minimum is found. Then vary 2a  (keeping the others fixed) until a new minimum is found,
and so on. This is illustrated in Fig. 8 where M = 2 and the errors are strongly correlated.
But in Fig. 8 many trials are needed. This stepwise procedure does converge, but in the case
of Fig. 8, much too slowly. In the method of steepes descent one moves against the gradient
in a-space:

.....ˆˆ 2
2

1
1

+
∂
∂

+
∂
∂

=∇ a
a
S

a
a
S

Sa

So we change all the a’s simultaneously in the ratio:
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............:::
321 a

S
a
S

a
S

∂
∂

∂
∂

∂
∂

Fig. 8. Contours of constant S vs. a1 and a2. Stepwise search for  the minimum.
Fig. 9. Same as Fig. 8, but using the method of steepest descent.

In order to find the minimum allong this line in a-space one should use an efficient step size.
An effective method is to assume ( )sS  varies quadratically from the minimum position *s
where s is the distance along this line. Then the step size to the minimum is:

321

321
1

0

2
43

2 SSS
SSSs

ss
+−
+−∆

+=

where 1S , 2S , and 3S  are equally spaced evaluations of ( )sS  along s with step size S∆
starting from 1s , i. e., sss ∆+= 12 , sss ∆+= 213 .

One or two iterations using the above formula will reach the minimum along s shown as point
(2) in Fig. 9. The next repetition of the above procedure takes us to point (3) in Fig. 9. It is
clear by comparing Fig. 9 with Fig. 8 that the method of steepest descent requires much
fewer computer evaluations of ( )aS  than does the one variable at a time method.

Least Squares with Constraints

In some problems the possible values of the ja  are restricted by subsidiary constraint

relations. For example, consider an elastic scattering event in a bubble chamber where the
measurements jy  are track coordinates and the ia  are track directions and momenta.

However, the combinations of ia  that are physically possible are restricted by energy-

momentum conservation. The most common way of handling this situation is to use the 4
constraint equations to eliminate 4 of the a’s in ( )aS . Then S is minimized with respect to
the remaining a’s.
In this example there would be (9 – 4) = 5 independent a’s: two for orientation of the
scattering plane, one for direction of incoming track in this plane, and one for scattering
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angle. There could also be constraint relations among the measurable quantities jy . In

either case, if the method of substitution is too cumbersome, one can use the method of
Lagrange multipliers.
In some cases the constraining relations are inequalities rather than equations. For example,
suppose it is known that 1a  must be a positive quantity. Then one could define a new set of

a’s where ( ) 221
2

1 , aaaa =′=′ , etc. Now if ( )aS ′  is minimized no non-physical values will be
used in the search of the minimum.
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Appendix V: Cumulative Gaussian and Chi-Squared Distributions

The 2χ  confidence limit is the probability of Chi-Squared exceeding the observed value; i.
e.:

CL = ( )∫
∞

2

22

χ
χχ dPp

Where pP  for p degrees of freedom is given by Eq. (30a)[20].

Fig 10(a). 2χ  confidence level vs. 2χ  for nD degrees of freedom ( 2χ > 1).

Gaussian Confidence Limits

Let 2χ  = 
2









σ
x

. Then for Dn  = 1,

                                                
[20] Fig. 10 is reprinted from:
Rev. Mod. Phys. 52, No. 2, Part 11, April 1980 (page 536).
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( ) dx
xx

d
xx

dP 

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Thus CL for Dn  is twice the area under a single Gaussian tail.
For example the Dn  = 1 curve for 2χ  = 4 has a value of CL = 0.046. This means that the

probability of getting σ2≥x  is 4.6% for a Gaussian distribution.

Fig 10(b). 2χ  confidence level vs. 2χ  for nD degrees of freedom ( 2χ < 1).
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