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generally considered to be as serious a flaw as undercover-
age, comes with a price: loss of power in rejecting false
hypotheses.

Our confidence intervals require the full power of Ney-
man’s construction, which for one measured quantity and
one unknown parameter is called the method of ‘‘confidence
belts’’ @10,12#. Figure 1 illustrates such a construction on a
graph of the parameterm vs the measured quantityx. For
each value ofm, one examinesP(xum) along the horizontal
line throughm. One selects an interval@x1 ,x2# which is a
subset of this line such that

P~xP@x1 ,x2#um!5a. ~2.4!

Such intervals are drawn as horizontal line segments in Fig.
1, at representative values ofm. We refer to the interval
@x1 ,x2# as the ‘‘acceptance region’’ or the ‘‘acceptance in-
terval’’ for that m. In order to specify uniquely the accep-
tance region, one mustchooseauxiliary criteria. One has
total freedom to make this choice,if the choice is not influ-
enced by the data x0 . The most common choices are

P~x,x1um!512a, ~2.5!

which leads to ‘‘upper confidence limits’’~which satisfy
P(m.m2)512a!, and

P~x,x1um!5P~x.x2um!5~12a!/2, ~2.6!

which leads to ‘‘central confidence intervals’’@which satisfy
P(m,m1)5P(m.m2)5(12a)/2#. For these choices, the
full confidence belt construction is rarely mentioned, since a
simpler explanation suffices when one specifiesP(x,x1um)
and P(x.x2um) separately. For more complicated choices
which still satisfy the more general specification of Eq.~2.4!,
an ordering principle is needed to specify whichx’s to in-
clude in the acceptance region. We give our ordering prin-
ciple in Sec. IV.

The construction is complete when horizontal acceptance
intervals are drawn for each value ofm. Upon performing an
experiment to measurex and obtaining the valuex0 , one
draws a vertical line~shown as a dashed line in Fig. 1!
throughx0 on the horizontal axis. The confidence interval is
the union of all values ofm for which the corresponding
horizontal interval is intercepted by the vertical line; typi-
cally this is a simply connected interval@m1 ,m2#. When
displayed in texts, typically only the end points of the inter-
vals are drawn, which collectively form the ‘‘confidence
belt.’’

By construction, Eq.~2.3! is satisfied for allm; hence it is
satisfied form t , whose value is fixed but unknown.

III. EXAMPLES OF CLASSICAL INTERVALS

A. Gaussian with a boundary at the origin

Figures 2 and 3 show standard confidence belts~for upper
limits and central intervals, respectively! when the observ-

FIG. 1. A generic confidence belt construction and its use. For
each value ofm, one draws a horizontal acceptance interval@x1 ,x2#
such thatP(xP@x1 ,x2#um)5a. Upon performing an experiment to
measurex and obtaining the valuex0 , one draws the dashed verti-
cal line throughx0 . The confidence interval@m1 ,m2# is the union
of all values ofm for which the corresponding acceptance interval is
intercepted by the vertical line.

FIG. 2. Standard confidence belt for 90% C.L. upper limits for
the mean of a Gaussian, in units of the rms deviation. The second
line in the belt is atx51`.

FIG. 3. Standard confidence belt for 90% C.L. central confi-
dence intervals for the mean of a Gaussian, in units of the rms
deviation.
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able x is simply the measured value ofm in an experiment
with a Gaussian resolution function with known fixed rms
deviations, set here to unity. I.e.,

P~xum!5
1

A2p
exp@2~x2m!2/2#. ~3.1!

We consider the interesting case where only non-negative
values form are physically allowed~for example, ifm is a
mass!. Thus, the graph does not exist form,0.

Although these are standard graphs, we believe that com-
mon use of them is not entirely proper. Figure 2, constructed
using Eq. ~2.5!, is appropriate for experimentswhen it is
determined before performing the experiment that an upper
limit will be published. Figure 3, constructed using Eq.~2.6!,
is appropriate for experimentswhen it is determined before
performing the experiment that a central confidence interval
will be published. However, it may be deemed more sensible
to decide,based on the results of the experiment, whether to
publish an upper limit or a central confidence interval.

Let us suppose, for example, that physicist X takes the
following attitude in an experiment designed to measure a
small quantity: ‘‘If the resultx is less then 3s, I will state an
upper limit from the standard tables. If the result is greater
than 3s, I will state a central confidence interval from the
standard tables.’’ We call this policy ‘‘flip-flopping’’ based
on the data. Furthermore, physicist X may say, ‘‘If my mea-
sured value of a physically positive quantity is negative, I
will pretend that I measured zero when quoting a confidence
interval,’’ which introduces some conservatism.

We can examine the effect of such a flip-flopping policy
by displaying it in confidence-belt form as shown in Fig. 4.
For each value of measuredx, we draw at thatx the vertical
segment@m1 ,m2# that physicist X will quote as a confidence
interval. Then we can examine this collection of vertical con-
fidence intervals to see what horizontal acceptance intervals

it implies. For example, form52.0, the acceptance interval
has x15221.28 andx25211.64. This interval only con-
tains 85% of the probabilityP(xum). Thus Eq.~2.4! is not
satisfied. Physicists X’s intervalsundercoverfor a significant
range ofm: they arenot confidence intervals or conservative
confidence intervals.

Both Figs. 2 and 3are confidence intervals when used
appropriately, i.e., without flip-flopping. However, the result
is unsatisfying when one measures, for example,x521.8.
In that case, one draws the vertical line as directed and finds
that the confidence interval is the empty set.@An alternative
way of expressing this situation is to allow non-physicalm’s
when constructing the confidence belt, and then to say that
the confidence interval is entirely in the non-physical region.
This requires knowingP(xum) for non-physicalm, which
can raise conceptual difficulties.# When this situation arises,
oneknowsthat one is in the ‘‘wrong’’ 10% of the ensemble
quoting 90% C.L. intervals. One can go ahead and quote the
wrong result, and the ensemble of intervals will have the
proper coverage. But this is not very comforting.

Both problems of the previous two paragraphs are solved
by the ordering principle which we give in Sec. IV.

B. Poisson process with background

Figures 5 and 6 show standard@13,14# confidence belts
for a Poisson process when the observablex is the total
number of observed events,n, consisting of signal events
with meanm and background events withknown meanb.
I.e.,

P~num!5~m1b!nexp@2~m1b!#/n!. ~3.2!

In these figures, we use for illustration the case where
b53.0.

Sincen is an integer, Eq.~2.3! can only be approximately
satisfied. By convention dating to the 1930s, one strictly
avoids undercoverage and replaces the equality in Eq.~2.3!
with ‘‘ >.’’ Thus the intervals overcover, and are conserva-
tive.

FIG. 4. Plot of confidence belts implicitly used for 90% C.L.
confidence intervals~vertical intervals between the belts! quoted by
flip-flopping physicist X, described in the text. They are not valid
confidence belts, since they can cover the true value at a frequency
less than the stated confidence level. For 1.36,m,4.28, the cov-
erage~probability contained in the horizontal acceptance interval! is
85%.

FIG. 5. Standard confidence belt for 90% C.L. upper limits, for
unknown Poisson signal meanm in the presence of a Poisson back-
ground with known meanb53.0. The second line in the belt is at
n51`.
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TABLE X. Our confidence intervals for the meanm of a Gaussian, constrained to be non-negative, as a function of the measured mean
x0 , for commonly used confidence levels. Italicized intervals correspond to cases where the goodness-of-fit probability~Sec. IV C! is less
than 1%. All numbers are in units ofs.

x0 68.27% C.L. 90% C.L. 95% C.L. 99% C.L. x0 68.27% C.L. 90% C.L. 95% C.L. 99% C.L.

23.0 0.00, 0.04 0.00, 0.26 0.00, 0.42 0.00, 0.80
22.9 0.00, 0.04 0.00, 0.27 0.00, 0.44 0.00, 0.82
22.8 0.00, 0.04 0.00, 0.28 0.00, 0.45 0.00, 0.84
22.7 0.00, 0.04 0.00, 0.29 0.00, 0.47 0.00, 0.87
22.6 0.00, 0.05 0.00, 0.30 0.00, 0.48 0.00, 0.89
22.5 0.00, 0.05 0.00, 0.32 0.00, 0.50 0.00, 0.92
22.4 0.00, 0.05 0.00, 0.33 0.00, 0.52 0.00, 0.95
22.3 0.00, 0.05 0.00, 0.34 0.00, 0.54 0.00, 0.99
22.2 0.00, 0.06 0.00, 0.36 0.00, 0.56 0.00, 1.02
22.1 0.00, 0.06 0.00, 0.38 0.00, 0.59 0.00, 1.06
22.0 0.00, 0.07 0.00, 0.40 0.00, 0.62 0.00, 1.10
21.9 0.00, 0.08 0.00, 0.43 0.00, 0.65 0.00, 1.14
21.8 0.00, 0.09 0.00, 0.45 0.00, 0.68 0.00, 1.19
21.7 0.00, 0.10 0.00, 0.48 0.00, 0.72 0.00, 1.24
21.6 0.00, 0.11 0.00, 0.52 0.00, 0.76 0.00, 1.29
21.5 0.00, 0.13 0.00, 0.56 0.00, 0.81 0.00, 1.35
21.4 0.00, 0.15 0.00, 0.60 0.00, 0.86 0.00, 1.41
21.3 0.00, 0.17 0.00, 0.64 0.00, 0.91 0.00, 1.47
21.2 0.00, 0.20 0.00, 0.70 0.00, 0.97 0.00, 1.54
21.1 0.00, 0.23 0.00, 0.75 0.00, 1.04 0.00, 1.61
21.0 0.00, 0.27 0.00, 0.81 0.00, 1.10 0.00, 1.68
20.9 0.00, 0.32 0.00, 0.88 0.00, 1.17 0.00, 1.76
20.8 0.00, 0.37 0.00, 0.95 0.00, 1.25 0.00, 1.84
20.7 0.00, 0.43 0.00, 1.02 0.00, 1.33 0.00, 1.93
20.6 0.00, 0.49 0.00, 1.10 0.00, 1.41 0.00, 2.01
20.5 0.00, 0.56 0.00, 1.18 0.00, 1.49 0.00, 2.10
20.4 0.00, 0.64 0.00, 1.27 0.00, 1.58 0.00, 2.19
20.3 0.00, 0.72 0.00, 1.36 0.00, 1.67 0.00, 2.28
20.2 0.00, 0.81 0.00, 1.45 0.00, 1.77 0.00, 2.38
20.1 0.00, 0.90 0.00, 1.55 0.00, 1.86 0.00, 2.48

0.0 0.00, 1.00 0.00, 1.64 0.00, 1.96 0.00, 2.58

0.1 0.00, 1.10 0.00, 1.74 0.00, 2.06 0.00, 2.68
0.2 0.00, 1.20 0.00, 1.84 0.00, 2.16 0.00, 2.78
0.3 0.00, 1.30 0.00, 1.94 0.00, 2.26 0.00, 2.88
0.4 0.00, 1.40 0.00, 2.04 0.00, 2.36 0.00, 2.98
0.5 0.02, 1.50 0.00, 2.14 0.00, 2.46 0.00, 3.08
0.6 0.07, 1.60 0.00, 2.24 0.00, 2.56 0.00, 3.18
0.7 0.11, 1.70 0.00, 2.34 0.00, 2.66 0.00, 3.28
0.8 0.15, 1.80 0.00, 2.44 0.00, 2.76 0.00, 3.38
0.9 0.19, 1.90 0.00, 2.54 0.00, 2.86 0.00, 3.48
1.0 0.24, 2.00 0.00, 2.64 0.00, 2.96 0.00, 3.58
1.1 0.30, 2.10 0.00, 2.74 0.00, 3.06 0.00, 3.68
1.2 0.35, 2.20 0.00, 2.84 0.00, 3.16 0.00, 3.78
1.3 0.42, 2.30 0.02, 2.94 0.00, 3.26 0.00, 3.88
1.4 0.49, 2.40 0.12, 3.04 0.00, 3.36 0.00, 3.98
1.5 0.56, 2.50 0.22, 3.14 0.00, 3.46 0.00, 4.08
1.6 0.64, 2.60 0.31, 3.24 0.00, 3.56 0.00, 4.18
1.7 0.72, 2.70 0.38, 3.34 0.06, 3.66 0.00, 4.28
1.8 0.81, 2.80 0.45, 3.44 0.16, 3.76 0.00, 4.38
1.9 0.90, 2.90 0.51, 3.54 0.26, 3.86 0.00, 4.48
2.0 1.00, 3.00 0.58, 3.64 0.35, 3.96 0.00, 4.58
2.1 1.10, 3.10 0.65, 3.74 0.45, 4.06 0.00, 4.68
2.2 1.20, 3.20 0.72, 3.84 0.53, 4.16 0.00, 4.78
2.3 1.30, 3.30 0.79, 3.94 0.61, 4.26 0.00, 4.88
2.4 1.40, 3.40 0.87, 4.04 0.69, 4.36 0.07, 4.98
2.5 1.50, 3.50 0.95, 4.14 0.76, 4.46 0.17, 5.08
2.6 1.60, 3.60 1.02, 4.24 0.84, 4.56 0.27, 5.18
2.7 1.70, 3.70 1.11, 4.34 0.91, 4.66 0.37, 5.28
2.8 1.80, 3.80 1.19, 4.44 0.99, 4.76 0.47, 5.38
2.9 1.90, 3.90 1.28, 4.54 1.06, 4.86 0.57, 5.48
3.0 2.00, 4.00 1.37, 4.64 1.14, 4.96 0.67, 5.58
3.1 2.10, 4.10 1.46, 4.74 1.22, 5.06 0.77, 5.68

In contrast, our construction always provides a confidence
interval at the desired confidence level~with of course some
conservatism for the discrete problems!. Independently, one
can calculate the analogue of the goodness-of-fit, and decide
whether or not to consider the data or model~including mean
expected background! to be invalid. This issue arises in the
case when an upper limit is quoted; i.e., the confidence in-
terval is @0,m2#.

In the constrained Gaussian case, one might have data
x0522.0 and hence a 90% C.L. confidence interval@0, 0.4#
from Table X. The natural analogue for the goodness-of-fit is
the probability to obtainx<x0 under the best-fit assumption
of m50.

In the Poisson-with-background case, one might have data
n051 for b53 and hence a 90% C.L. confidence interval@0,
1.88# from Table IV. The natural analogue for the goodness-
of-fit is the probability to obtainn<n0 under the best-fit
assumption ofm50.

As noted above, in Fig. 8 we follow the practice of the
PDG @2# by indicating with dashed lines those regions where
the goodness-of-fit criterion is less than 1%. In Tables II–X,
the corresponding intervals are italicized.

In summary, because our intervals decouple the confi-
dence level used for a goodness-of-fit test from the confi-
dence level used for confidence interval construction, one is
free to choose them independently, at whatever level desired.

V. APPLICATION TO NEUTRINO OSCILLATION
SEARCHES

A. Experimental problem

Experimental searches for neutrino oscillations provide an
example of the application of this technique to a multidimen-
sional problem. Indeed it is just this problem that originally
focused our attention on this investigation.

Experiments of this type search for a transformation of
one species of neutrino into another. To be concrete, we
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assume that the experiment is to search for transformations
between muon type neutrinos,nm , and electron type neutri-
nos,ne , and that the influence of other types of neutrinos can
be ignored. We hypothesize that the weak eigenstatesunm&
and une& are linear superpositions of two mass eigenstates
un1& and un2&,

une&5un1&cosu1un2&sin u ~5.1!

and

unm&5un2&cosu2un1&sin u, ~5.2!

and that the mass eigenvalues forun1& and un2& arem1 and
m2 , respectively. Quantum mechanics dictates that the prob-
ability of such a transformation is given by the formula
@2,16#

P~nm→ne!5sin2~2u!sin2S 1.27Dm2L

E D , ~5.3!

whereP is the probability for anm to transform into ane , L
is the distance in km between the creation of the neutrino
from meson decay and its interaction in the detector,E is the
neutrino energy in GeV, andDm25um1

22m2
2u in (eV/c2)2.

The result of such an experiment is typically represented
as a two-dimensional confidence region in the plane of the
two unknown physical parameters,u, the rotation angle be-
tween the weak and mass eigenstates, andDm2, the ~posi-
tive! difference between the squares of the neutrino masses.
Traditionally, sin2(2u) is plotted along the horizontal axis
and Dm2 is plotted along the vertical axis. An example of
such a plot is shown in Fig. 11, based on a toy model that we
develop below. In this example, no evidence for oscillations
is seen and the confidence region is set as the area to the left
of the curve in this figure.

B. Proposed technique for determining confidence regions

The problem of setting the confidence region for a neu-
trino oscillation search experiment often shares all of the
difficulties discussed in the previous sections. The variable

sin2(2u) is clearly bounded by zero and one. Values outside
this region can have no possible interpretation within the
theoretical framework that defines the unknown physical pa-
rameters. Yet consider an experiment searching in a region
of Dm2 in which oscillations either do not exist or are well
below the sensitivity of the experiment. Such an experiment
is typically searching for a small signal of excessne interac-
tions in a potentially large background ofne interactions
from conventional sources and misidentifiednm interactions.
Thus, it is equally likely to have a best fit to a negative value
of sin2(2u) as to a positive one, provided that the fit to Eq.
~5.3! is unconstrained.

Typically, the experimental measurement consists of
counting the number of events in an arbitrary number of bins
@17# in the observed energy of the neutrino and possibly
other measured variables, such as the location of the interac-
tion in the detector. Thus, the measured data consist of a set
N[$ni%, together with an assumed known mean expected
backgroundB[$bi% and a calculated expected oscillation
contributionT[$m i usin2(2u),Dm2%.

To construct the confidence region, the experimenter must
choose an ordering principle to decide which of the large
number of possibleN sets should be included in the accep-
tance region for each point on the sin2(2u)-Dm2 plane. We
suggest an ordering principle identical to the one suggested
in Sec. IV, namely the ratio of the probabilities,

R5
P~NuT!

P~NuTbest!
, ~5.4!

whereTbest„sin2(2u)best,Dmbest
2

… gives the highest probability
for P(NuT) for the physically allowed values of sin2(2u) and
Dm2.

In the Gaussian regime,x2522 ln(P), and so this ap-
proach is equivalent to using the difference inx2 betweenT
andTbest, i.e.,

R8[Dx25(
i

F ~ni2bi2m i !
2

s i
2 2

~ni2bi2mbesti
!2

s i
2 G ,

~5.5!

FIG. 10. Plot of our 90% confidence intervals for the mean of a
Gaussian, constrained to be non-negative, described in the text.

FIG. 11. Calculation of the confidence region for an example of
the toy model in which sin2(2u)50. The 90% confidence region is
the area to the left of the curve.
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