4/19/12 Feldman Cousins "Unified Approach, Classical Look at Gaussian Limit First "Know background b... say b= 50 (signal = 0)Expect: (n-b) · Zb VITT B Freeword A 50 Bayesian ' measure N = 5+b5= N-0 events, See $(n-p)^{c}$ P(12;1)= 前 × (prior density) a some NOT FEALLY fint ..., GNGAN

Poisson

b = 50Sloppy Classial $h_0 = 70$ Now 11.633 10.843 30,397 28,367 Nhigh merrals 68°10 un fidence level is This What a discovery ? 599.16% otarea 5=0 -2C 承 X0 2.39 1255 Than 1% chane. 8 5=0 What \mathcal{W} 42 6=50 n= 55 events no good evidence Sigha Flops

P(x, p) = 677 Normally woold P(X, p 5% X1=-1 N= 0.64 -1-x2 e 2x2 6 Dest guess (p=0) ZIT -21 Look at likelihood ratio P(x, p) ETT -1,12 R(x, p=0) (211 и (X - : **Wiops** $\nu = 0_{\gamma}$

FIG. 3. Standard confidence belt for 90% C.L. central confidence intervals for the mean of a Gaussian, in units of the rms deviation.

FIG. 4. Plot of confidence belts implicitly used for 90% C.L. confidence intervals (vertical intervals between the belts) quoted by flip-flopping physicist X, described in the text. They are not valid confidence belts, since they can cover the true value at a frequency less than the stated confidence level. For $1.36 < \mu < 4.28$, the coverage (probability contained in the horizontal acceptance interval) is 85%.

TABLE X. Our confidence intervals for the mean μ of a Gaussian, constrained to be non-negative, as a function of the measured mean x_0 , for commonly used confidence levels. Italicized intervals correspond to cases where the goodness-of-fit probability (Sec. IV C) is less than 1%. All numbers are in units of σ .

<i>x</i> ₀	68.27% C.L.	90% C.L.	95% C.L.	99% C.L.	<i>x</i> ₀	68.27% C.L.	90% C.L.	95% C.L.	99% C.L.
-3.0	0.00, 0.04	0.00, 0.26	0.00, 0.42	0.00, 0.80	0.1	0.00, 1.10	0.00, 1.74	0.00, 2.06	0.00, 2.68
-2.9	0.00, 0.04	0.00, 0.27	0.00, 0.44	0.00, 0.82	0.2	0.00, 1.20	0.00, 1.84	0.00, 2.16	0.00, 2.78
-2.8	0.00, 0.04	0.00, 0.28	0.00, 0.45	0.00, 0.84	0.3	0.00, 1.30	0.00, 1.94	0.00, 2.26	0.00, 2.88
-2.7	0.00, 0.04	0.00, 0.29	0.00, 0.47	0.00, 0.87	0.4	0.00, 1.40	0.00, 2.04	0.00, 2.36	0.00, 2.98
-2.6	0.00, 0.05	0.00, 0.30	0.00, 0.48	0.00, 0.89	0.5	0.02, 1.50	0.00, 2.14	0.00, 2.46	0.00, 3.08
-2.5	0.00, 0.05	0.00, 0.32	0.00, 0.50	0.00, 0.92	0.6	0.07, 1.60	0.00, 2.24	0.00, 2.56	0.00, 3.18
-2.4	0.00, 0.05	0.00, 0.33	0.00, 0.52	0.00, 0.95	0.7	0.11, 1.70	0.00, 2.34	0.00, 2.66	0.00, 3.28
-2.3	0.00, 0.05	0.00, 0.34	0.00, 0.54	0.00, 0.99	0.8	0.15, 1.80	0.00, 2.44	0.00, 2.76	0.00, 3.38
-2.2	0.00, 0.06	0.00, 0.36	0.00, 0.56	0.00, 1.02	0.9	0.19, 1.90	0.00, 2.54	0.00, 2.86	0.00, 3.48
-2.1	0.00, 0.06	0.00, 0.38	0.00, 0.59	0.00, 1.06	1.0	0.24, 2.00	0.00, 2.64	0.00, 2.96	0.00, 3.58
-2.0	0.00, 0.07	0.00, 0.40	0.00, 0.62	0.00, 1.10	1.1	0.30, 2.10	0.00, 2.74	0.00, 3.06	0.00, 3.68
-1.9	0.00, 0.08	0.00, 0.43	0.00, 0.65	0.00, 1.14	1.2	0.35, 2.20	0.00, 2.84	0.00, 3.16	0.00, 3.78
-1.8	0.00, 0.09	0.00, 0.45	0.00, 0.68	0.00, 1.19	1.3	0.42, 2.30	0.02, 2.94	0.00, 3.26	0.00, 3.88
-1.7	0.00, 0.10	0.00, 0.48	0.00, 0.72	0.00, 1.24	1.4	0.49, 2.40	0.12, 3.04	0.00, 3.36	0.00, 3.98
-1.6	0.00, 0.11	0.00, 0.52	0.00, 0.76	0.00, 1.29	1.5	0.56, 2.50	0.22, 3.14	0.00, 3.46	0.00, 4.08
-1.5	0.00, 0.13	0.00, 0.56	0.00, 0.81	0.00, 1.35	1.6	0.64, 2.60	0.31, 3.24	0.00, 3.56	0.00, 4.18
-1.4	0.00, 0.15	0.00, 0.60	0.00, 0.86	0.00, 1.41	1.7	0.72, 2.70	0.38, 3.34	0.06, 3.66	0.00, 4.28
-1.3	0.00, 0.17	0.00, 0.64	0.00, 0.91	0.00, 1.47	1.8	0.81, 2.80	0.45, 3.44	0.16, 3.76	0.00, 4.38
-1.2	0.00, 0.20	0.00, 0.70	0.00, 0.97	0.00, 1.54	1.9	0.90, 2.90	0.51, 3.54	0.26, 3.86	0.00, 4.48
-1.1	0.00, 0.23	0.00, 0.75	0.00, 1.04	0.00, 1.61	2.0	1.00, 3.00	0.58, 3.64	0.35, 3.96	0.00, 4.58
-1.0	0.00, 0.27	0.00, 0.81	0.00, 1.10	0.00, 1.68	2.1	1.10, 3.10	0.65, 3.74	0.45, 4.06	0.00, 4.68
-0.9	0.00, 0.32	0.00, 0.88	0.00, 1.17	0.00, 1.76	2.2	1.20, 3.20	0.72, 3.84	0.53, 4.16	0.00, 4.78
-0.8	0.00, 0.37	0.00, 0.95	0.00, 1.25	0.00, 1.84	2.3	1.30, 3.30	0.79, 3.94	0.61, 4.26	0.00, 4.88
-0.7	0.00, 0.43	0.00, 1.02	0.00, 1.33	0.00, 1.93	2.4	1.40, 3.40	0.87, 4.04	0.69, 4.36	0.07, 4.98
-0.6	0.00, 0.49	0.00, 1.10	0.00, 1.41	0.00, 2.01	2.5	1.50, 3.50	0.95, 4.14	0.76, 4.46	0.17, 5.08
-0.5	0.00, 0.56	0.00, 1.18	0.00, 1.49	0.00, 2.10	2.6	1.60, 3.60	1.02, 4.24	0.84, 4.56	0.27, 5.18
-0.4	0.00, 0.64	0.00, 1.27	0.00, 1.58	0.00, 2.19	2.7	1.70, 3.70	1.11, 4.34	0.91, 4.66	0.37, 5.28
-0.3	0.00, 0.72	0.00, 1.36	0.00, 1.67	0.00, 2.28	2.8	1.80, 3.80	1.19, 4.44	0.99, 4.76	0.47, 5.38
-0.2	0.00, 0.81	0.00, 1.45	0.00, 1.77	0.00, 2.38	2.9	1.90, 3.90	1.28, 4.54	1.06, 4.86	0.57, 5.48
-0.1	0.00, 0.90	0.00, 1.55	0.00, 1.86	0.00, 2.48	3.0	2.00, 4.00	1.37, 4.64	1.14, 4.96	0.67, 5.58
0.0	0.00, 1.00	0.00, 1.64	0.00, 1.96	0.00, 2.58	3.1	2.10, 4.10	1.46, 4.74	1.22, 5.06	0.77, 5.68

FIG. 10. Plot of our 90% confidence intervals for the mean of a Gaussian, constrained to be non-negative, described in the text.

