1) Counting with no background.
a) "inverse" problem, 1/1

b) Bayesian View

c) Frequentist or Classical View.

2) Simple inclusion of background.

a) felative evrur degrades

b) how do you estimate buckground?

3) Limits + discovery

a) Look for signal on top of expected backgrund

buckgrund, what do you do?

c) How do you discour, when it seems like "too many" events for background 7.

TOPS. 35500

i) No backgrund. Somehow, "Gedanken" Pun your experiment, ests, etc. See, say, 25 events. Feldman-Cusins calls this no=25 notation. What you know (with scant error) of an error on that. But. who cares? What everyone wants to know: U+, CFC notation) the "true" value of the mean # of events you expected. Very crudely, you should know. Symmetric ~ 68% chance 25-125 < 14 < 25+125 $< N_{+} < 30$ or N+ = 25 ± 5 11 lo ~ 95% chunce 25-2/25 < 14 < 25+2/25 15 < M < 35 "Double Sided" |Single Sided! 90% 1.28 0-! 125-1.28.15 = 22.1 79510_1.640=16.8

Buyesian, Classical P(no; 1/4) = \frac{1}{2\pi_{4}} e \frac{-(n_0 - 1/4)^2}{2\pi_{4}}

duce \frac{1}{2} \tau_{4} deduce known limiting case a 14 no - u+ but everyone wants to know P(U+; no) deduce Bayesian: OK, get to work, but: flaws! Classical/Frequentist: who cares what everyone wants, do what is right.

Think different. Bayes P(A+B)=P(A;B)P(B) = P(B;A)P(A) heown probability of probof prob A, given B B, given A Simplest case: P(A3B)=P(A) P(B3A)=P(B) statistical don't care in Appenduce. abut A. P(A+B)- P(A)P(B) = P(B)P(A) P(u+; no) P(no) = P(no; u+) P(u+) 改生" Poisson Want . constant" like. 14>0 No is known!

Lots of arguments over P(ax). It you just forget about it P(14) no) = 1 = - (no-14) (P(n)) some people NOTE SWAP give it up argue about *Alternative Trink differently t / which righ "Neyman Constriction" Want, say, symmetric 68% limits. 32% -> 16%, 16% Imagine that ution that, upon repeated executions of your experiment, would give 16% of n's cobore no 160/0 Notlow 25 ~20,475 16060 E Wingh > 30,525 NHNIGH

TOPS 35500

5

("Neyman Visualization Cenestructur). N 25 (080 but) 15 25 Advantage: very "experimental Me: Bayes when it feels good Clussical

Backgrand: centrounding

"Somehow" know it (must estimate errors)

4=25, b=50.0000 \ AVERAGE

How? Beam On/off

Sidebunds

bin bin bin bin manages

Tops. 35500

6 Erudely: Now measure 75± 175 75 + 8.7 but 50,0000 of those are background. would estimate N+ = 25 ± 8.7 bigger than Relative ever 5 because backgrund flochates 8.7 ~ 35% > not (75+25 = 10 was 5 ~ 20% maybe as you expected (25/59) 95% discovery. 50+1-la- 750 which? (dan It argue) do abeter experiment) > Limits man ship!

Tops

THE RUB

> In previous experiment, expect
50 bkgd, want to measure can
unknown signal, maybe now not 25
but small.

-> Suppose you see 35 events.

A) Is $\mu = 35-50 = -15$ } > "central value is!" > $\mu + 20$ "non physical"

(B) (Is b really equal to 50?

worm = 35-50 = -15 ~ -20

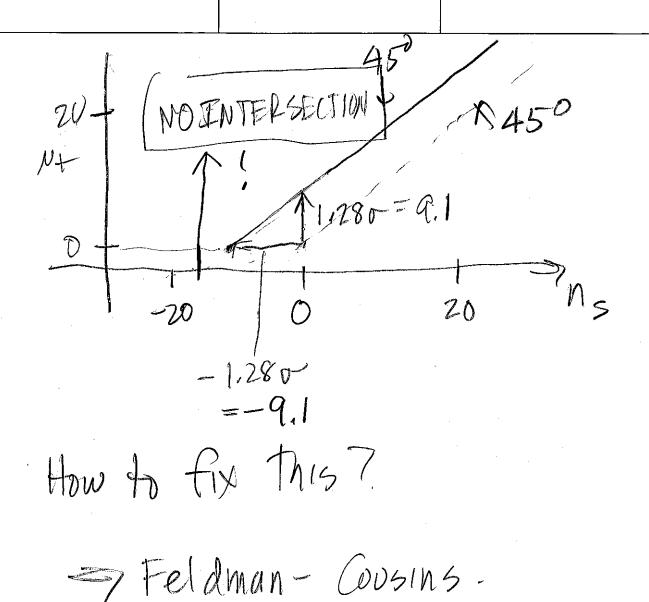
Tool word happen, ~ 1 m 40"

Dealing with this situation is what auses interminable discossions between Bayesius and Classicals.

Bayestan 1 Prob of UT P(n=1,4,6) Gmall. 一15 Prior 1470 physical P(p+) P(n;jp+)b) = P(p+;ns)b) UGLY! Blum of remaining area NOT EVEN IN F-C N+ 90% Canti-Bayesian!) opper limit Another way!

Tops.

42-981 50 SHETTS EYE-EASE*
Waffonal®Reant 42-382 100 SHEETS EYE-EASE*



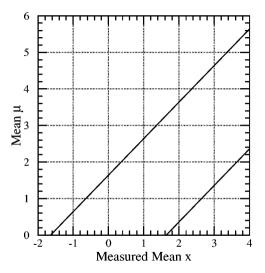


FIG. 3. Standard confidence belt for 90% C.L. central confidence intervals for the mean of a Gaussian, in units of the rms deviation.

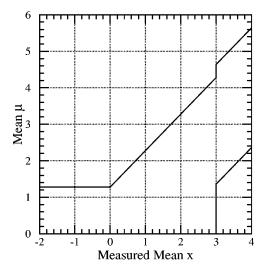


FIG. 4. Plot of confidence belts implicitly used for 90% C.L. confidence intervals (vertical intervals between the belts) quoted by flip-flopping physicist X, described in the text. They are not valid confidence belts, since they can cover the true value at a frequency less than the stated confidence level. For $1.36 < \mu < 4.28$, the coverage (probability contained in the horizontal acceptance interval) is 85%.

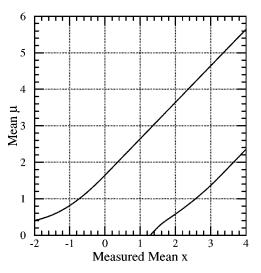


FIG. 10. Plot of our 90% confidence intervals for the mean of a Gaussian, constrained to be non-negative, described in the text.