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Unified approach to the classical statistical analysis of small signals
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We give a classical confidence belt construction which unifies the treatment of upper confidence limits for
null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem
(apparently not previously recognizeithat the choice of upper limit or two-sided intervals leads to intervals
which are not confidence intervals if the choice is based on the data. We apply the construction to two related
problems which have recently been a battleground between classical and Bayesian statistics: Poisson processes
with background and Gaussian errors with a bounded physical region. In contrast with the usual classical
construction for upper limits, our construction avoids unphysical confidence intervals. In contrast with some
popular Bayesian intervals, our intervals eliminate conservatissgquentist coverage greater than the stated
confidencg in the Gaussian case and reduce it to a level dictated by discreteness in the Poisson case. We
generalize the method in order to apply it to analysis of experiments searching for neutrino oscillations. We
show that this technique both gives correct coverage and is powerful, while other classical techniques that have
been used by neutrino oscillation search experiments fail one or both of these criteria.
[S0556-282(198)00109-X

PACS numbd(s): 06.20.Dk, 14.60.Pq

I. INTRODUCTION decide whether to consult confidence interval tables for up-
per limits or for central confidence intervals. In contrast, our
Classical confidence intervals are the traditional way inunified set of confidence intervals satisfiéy construction

periments. Approximate methods of confidence interval cont’U€ value. Thus the problem of wrong confidence intervals

struction, in particular the likelihood-ratio method, are often's also solved.

: : . Our intervals also effectively decouple the calculation of
L!SEd in order t(.) reduce computatlo_n. When these approXiMag o rvals from the test of goodness-of-fit, which is desirable
tions are invalid, true confidence intervals can be obtaine

. _ - : ut in fact not the case for traditional classical upper limit
using the originaldefining construction of Neymafl]. In .-, |ations PP

recent years, there has been considerable dissatisfaction with e, developing the new intervals for the two prototypi-

the usual results of Neyman's construction for upper confica| 1p problems, we generalize them for use in the analysis
dence limits, in particular when the result is an unphysicalyf experiments searching for neutrino oscillations, continu-
(or empty setinterval. This dissatisfaction led the Particle jng to adhere to the Neyman construction.
Data Group(PDG) [2] to describe procedures for Bayesian |n Sec. I, we review and contrast Bayesian and classical
interval construction in the troublesome cases: Poisson pranterval construction. In Sec. lIl, we review the troublesome
cesses with background and Gaussian errors with a boundedses of Poisson processes with background and Gaussian
physical region. errors with a bounded physical region. We introduce the uni-
In this paper, we use the freedom inherent in Neyman'dying ordering principle in Sec. IV, and apply it to the pre-
construction in a novel way to obtain a unified set of classiviously discussed problems. In Sec. V, we generalize the
cal confidence intervals for setting upper limits and quotingmethod for use in neutrino oscillation searches, and compare
two-sided confidence intervals. The new element is a particuit to other classical methods. Finally, in Sec. VI, we intro-
lar choice of ordering, based on likelihood ratios, which weduce an additional quantity helpful in describing experiments
substitute for more common choices in Neyman's construcwhich observe less background than expected. We conclude
tion. We then obtain confidence intervals which are nevein Sec. VII.
unphysical or empty. Thus they remove an original motiva- We adopt the following notation: the subscripton a
tion for the description of Bayesian intervals by the PDG. parameter means the unknown true value; the subscript 0
Moreover, we show below that commonly quoted confi-means a particular measured value obtained by an experi-
dence intervals are wrongiore than allowed by the stated ment. Thus, for exampley is a parameter whose true value
confidencaf (as is typical one uses the experimental data to w4, is unknown;n, is the particular result of an experiment
which measures the number of events,For most of our
discussion, we use for illustration 90% confidence level
*Email address: feldman@physics.harvard.edu (C.L.) confidence intervals on a single parameteiThe C.L.
TEmail address: cousins@physics.ucla.edu is more generally called.
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Il. BAYESIAN AND CLASSICAL INTERVAL represents prior ignorance or which is “non-informative.”
CONSTRUCTIONS The naive choice of a uniform prior is not well defined for a

continuous variable, since one must specify in what metric

the prior is uniform; this is just as hard as specifying the

Although our approach is classical, it is worthwhile 1o nctional form in a particular given metric. For a parameter
review Bayesian intervals since we find that m|sconcept|on§u which is restricted td0<], a common non-informative
about classical intervals can have their roots in misinterpret: L

ing them as Bayesian intervals. For advocacy of Bayesiaﬁrior In the statistics ”.t eraturEQ,9] 1S Plu)=Llps, Whi.Ch
intervals in high energy physics, see, for example, Refs orresponds to "’.‘ uniform pl’.IOI’ for 4p. An alternative
3, 4 [10,11] for the Poisson mean B(u,) = 1/y/u,. In contrast,
'Suppose that we wish to make an inference about a pd"€ PDG description is equivalent to using a prior which is
rameteru whose true valuge, is unknown. Assume that we Uniform in u. This prior has no basis that we know of in
do this by making a single measurement of an observable Bayesian theory. It is based on the desire to have intervals
such that the probability density functigpdf) for obtaining ~ Which are conservativésee below and somewhat robust
the valuex depends on the unknown parametein a known  from a frequentistanti-Bayesiah point of view.

A. Bayesian intervals

way: we call this pdfP(x|«) [5]. (Note thatx need not be a  In our view, the attempt to find a non-informative prior
measurement of., though that is often the casejust needs Within Bayesian inference is misguided. The real power of
to be some observable whose pdf dependg.on Bayesian inference lies in its ability to incorporate “infor-

Now suppose that the single measurement gields the  mative” prior information, not “ignorance.” The interpreta-
value x,. One substitutes this value of into P(x|u) to  tion of Bayesian intervals based on uniform priors is vague
obtainP(xg| 1), known as the likelihood function, which we at best, since they may bear no relation either to subjective
denoteL(Xq| u). Bayesian intervals of a typical scientist or to classical confi-

The Bayesian deems it sensible to speak of pdf's for thelence intervals which are probability statements based only
unknown u,; these pdf's represent degree of belief abouton P(x|u).

mi - One makes inferences using the “posterior” pdf, which

is the conditional pdfP(u|x,) for the unknowny,, given

the resultx, of the measurement. It is related £oby apply- B. Classical confidence intervals

ing Bayes's theorem. Bayes'’s theorem in classical probabil- Neyman’s original “confidence intervals1] completely

ity says that the probability that an element. is in both s@qts avoid the concept of pdf's ip,, and hence have no trouble-

andB is P(A[B)P(B)=P(B|A)P(A). Bayesians apply this gome prior. They are limited to statements derived from

to pdf's for u(, obtaining P(x|w); in our experience this can lead to misinterpretations

_ by those who mistakenly take them to be statements about

P(ailX0) = L(Xol o) P(p10) P (Xo)- @1 P(u%o). We believe that, compared to Bayesian intervals

Typically the denominator is just a normalization constant,W'th an Ob]e.Ct'Ve prior, _co_nfldence |_ntervals provide the
preferred option for publishing numerical results of an ex-

and so the major issue is what to use Rfu,), which is periment in an objective way. However, it is critical not to

called the “prior” pdf. For the moment we assume that cmeinter ret them as Bayesian intervals, i.e., as statements about
has the prior pdf, so that then one has the posterior pdf. P Y P

P . . P(uXo). Rather, a confidence intervgl,,u,] is amem-
A Bayesian interval uq,u,] corresponding to a confi- t
dence levela can be constructed from the posterior pdf by ber of a setsuch that the set has the property that
requiring P(uelps,us))=a. 23

M2
P Xo)dui= a. 2.2
JM (ufxo)dps= @2 Here 4, and u, are functions of the measured and Eq.

(2.3 refers to thevarying confidence intervalguq , u»] from
These intervals are more properly called “credible inter-an ensemble of experiments wifixed u. For a set of confi-
vals,” although the phrase “Bayesian confidence intervals”dence intervals, E¢2.3) is true for every allowegk. Thus,
is also used6]. Note that there is freedom in tlehoiceof  in particular, the intervals contain ttixed unknowru, in a
nq depending on whether one desires an upper limit, lowefraction o of experiments. This is entirely different from the
limit, central interval, etc. Bayesian statement that the degree of belief thats in
We believe that for making decisions, this Bayesian def x1,u2] is a.
scription of inference is probably how many scientists do If Eq. (2.3) is satisfied, then one says that the intervals
(and shouldl think, and that the prior pdf one uses is typi- “cover” u at the stated confidence, or equivalently, that the
cally the subjectiveprior. One person’s subjective prior in- set of intervals has the correct “coverage.” If there is any
corporates all of that person’s personal beliefs as well as thealue of u for which P(n e[ w1, 1,])<a, then we say that
results of previous experiments. Thus, valuesuofvhich  the intervals “undercover” for thaj. Significant undercov-
contradict well-founded theoretical thinking afproperly  erage for anyu is a serious flaw. If there is any value pf
given a low prior[7]. for which P(u e[ wq,u12])>a, then we say that the inter-
There have been long-standing attempts to take the sulvals “overcover” for that u. A set of intervals is called
jectivity out of the prior pdf, in order to have an “objective” “conservative” if it overcovers for some values @f while
Bayesian interval. One attempts to define a prior pdf whichundercovering for no values @f. Conservatism, while not
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FIG. 1. A generic confidencc_e belt construction gnd its use. For FIG. 2. Standard confidence belt for 90% C.L. upper limits for
each value of, one draws a horizontal acceptance intefvalx;]  the mean of a Gaussian, in units of the rms deviation. The second
such thatP(x e [X;,X,]| ) = @. Upon performing an experiment to line in the belt is ak= + .

measurex and obtaining the valur,, one draws the dashed verti-

cal line througfo. The confidence intervdluy, ] is the union = o congtryction is complete when horizontal acceptance
of all values ofu for which the corresponding acceptance interval is.

intercented by the vertical line intervals are drawn for each value of Upon performing an
P y ' experiment to measure and obtaining the valug,, one
generally considered to be as serious a flaw as undercove(ij-r"’wvS a vertical Ilne_(shown as a dashed_ line n Fig) 1.
throughx, on the horizontal axis. The confidence interval is

age, comes with a price: loss of power in rejecting false . . .
h)g/potheses P P ) g the union of all values ofu for which the corresponding

Our confidence intervals require the full power of Ney- horizontal interval is intercepted by the vertical line; typi-

man’s construction, which for one measured quantity ancf‘?"y this !S a simply_ connected interv@jul_,,uz]. Whe_n
one unknown parameter is called the method of “confidencéj'Splayed In texts, typlcally onl)_/ the end points of th? Inter-
belts” [10,17. Figure 1 illustrates such a construction on a\tl)illf,,are drawn, which collectively form the “confidence
graph of the parametet vs the measured quantity. For : . . - ) o
each value ofu, one examine®(x|«) along the horizontal By.constructlon, Eq2.3 is .sat.|sf|ed for alk; hence it is
line through x. One selects an intervék, ,x,] which is a satisfied foru,, whose value is fixed but unknown.

subset of this line such that
I1l. EXAMPLES OF CLASSICAL INTERVALS

P(xe[xy,x =a. 2.4
(xelx 2]|’u) “« 24 A. Gaussian with a boundary at the origin

1, at representative values pf. We refer to the interval jimits and central intervals, respectivglwhen the observ-
[X1,X5] as the “acceptance region” or the “acceptance in-

terval” for that u. In order to specify uniquely the accep- 6
tance region, one musthooseauxiliary criteria. One has
total freedom to make this choic#,the choice is not influ-
enced by the datagx The most common choices are

AN

N

Ve

P(X<X{|u)=1-a, (2.5 4 Y4

which leads to “upper confidence limits{which satisfy
P(u>pu,)=1-a), and

Meil)nu
AN
il

/

/

/ /

P(X<xy| ) =P(x>xolw)=(1-a)l2, (2.6 )

which leads to “central confidence interval§iwhich satisfy

P(u<umqi)=P(u>u,)=(1—a)/2]. For these choices, the 1 F 4 ]
full confidence belt construction is rarely mentioned, since a C / / ]
simpler explanation suffices when one speciffég<x,|u) o DA Lo bl Al

2 -1 0 1 2 3 4

and P(x>x,|u) separately For more complicated choices
which still satisfy the more general specification of Ej4),
an ordering principle is needed to specify whixls to in- FIG. 3. Standard confidence belt for 90% C.L. central confi-
clude in the acceptance region. We give our ordering prindence intervals for the mean of a Gaussian, in units of the rms
ciple in Sec. IV. deviation.

Measured Mean x
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FIG. 4. Plot of confidence belts implicitly used for 90% C.L. ~ FIG. 5. Standard confidence belt for 90% C.L. upper limits, for
confidence intervalévertical intervals between the belguoted by ~ unknown Poisson signal meanin the presence of a Poisson back-
flip-flopping physicist X, described in the text. They are not valid 9round with known meab=3.0. The second line in the belt is at
confidence belts, since they can cover the true value at a frequendy= + -
less than the stated confidence level. For £.36<4.28, the cov-
erage(probability contained in the horizontal acceptance intgrigal it implies. For example, fop.=2.0, the acceptance interval
85%. hasx;=2-1.28 andx,=2+1.64. This interval only con-

tains 85% of the probability?(x|x). Thus Eq.(2.4) is not

ablex is simply the measured value @f in an experiment satisfied. Physicists X’s intervalsidercoveffor a significant
with a Gaussian resolution function with known fixed rmsrange ofu: they arenot confidence intervals or conservative

deviationo, set here to unity. l.e., confidence intervals.

Both Figs. 2 and 3are confidence intervals when used
1 ) appropriately, i.e., without flip-flopping. However, the result

P(x|u)= \/?GXF[_(X_M) 12]. (3.) s unsatisfying when one measures, for exampte—1.8.

m In that case, one draws the vertical line as directed and finds

We consider the interesting case where only non—negativ\;I',Cat thfe ():(o?fldeigcirl]?ter_\t/al tl's th_e templ'lty $em altirnatlve
values foru are physically allowedfor example, ifu is a ay of expressing this situation 1S to aflow non-p ysipa
mass. Thus, the graph does not exist far<0. when constructing the confidence belt, and then to say that

Although these are standard graphs, we believe that conﬁbe confidence interval is entirely in the non-physical region.

monuseofthem o entrely proper Figure 2 consucied 1 SOUTES KWL 1 non st Wer
using Eq.(2.5), is appropriate for experimentshen it is P '

determined before performing the experiment that an uppepnelfnowstohat one s in the "wrong™ 10% of the ensemble
limit will be published Figure 3, constructed using E@.6),  duoting 90% C.L. intervals. One can go ahead and quote the
is appropriate for experimentghen it is determined before wrong result, and the gngemble of mterval; will have the
performing the experiment that a central confidence imervaprogerhcovebrlage. B;Jthth's IS T‘Ot very comfortln%. |
will be published However, it may be deemed more sensibleb tr?t p(;o lems of t Ie pre;]\_/l?]us two pa_ragSrap Isvare solved
to decidebased on the results of the experimemhether to y the ordering principle which we give in Sec. {V.
publish an upper limit or a central confidence interval.

Let us suppose, for example, that physicist X takes the B. Poisson process with background

following attitude in an experiment designed to measure a Figures 5 and 6 show standajti3,14] confidence belts
small quantity: “If the resultx is less then 8, | will state an  for a Poisson process when the observables the total
upper limit from the standard tables. If the result is greateiymber of observed events, consisting of signal events

than 3]', | will state a central confidence interval from the with mean u and background events witkhown meanb.
standard tables.” We call this policy “flip-flopping” based | g

on the data. Furthermore, physicist X may say, “If my mea-

sured value of a physically positive quantity is negative, | P(n|u)=(u+b)"exd —(u+b)]/n!. (3.2
will pretend that | measured zero when quoting a confidence
interval,” which introduces some conservatism. In these figures, we use for illustration the case where

We can examine the effect of such a flip-flopping policy b=3.0.
by displaying it in confidence-belt form as shown in Fig. 4.  Sincen is an integer, Eq(2.3) can only be approximately
For each value of measured we draw at thak the vertical  satisfied. By convention dating to the 1930s, one strictly
segment w4, 1] that physicist X will quote as a confidence avoids undercoverage and replaces the equality in(E8)
interval. Then we can examine this collection of vertical con-with *“ =." Thus the intervals overcover, and are conserva-
fidence intervals to see what horizontal acceptance intervakive.
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15 TABLE 1. lllustrative calculations in the confidence belt con-
14 struction for signal meam in the presence of known mean back-
13 o groundb=3.0. Here we find the acceptance interval for0.5.
12
11 [ n  P(Nlp) ppes P(Nppresy R rank U.L. central
glg ) 0 0.030 0.0 0.050 0.607 6
é’ 8 - 1 0.106 0.0 0.149 0.708 5 \/ \/
= 7 2 0.185 0.0 0.224 0.826 3 \/ \/
&6 i - 3 0216 00 0224 0963 2 J
“2 5 ] ] 4 0.189 1.0 0.195 0966 1 \/ \/
4 " ] 5 0.132 2.0 0.175 0.753 4 \/ \/
z | 6 0.077 3.0 0.161 0.480 7 \/ \/
| [ [ 7 0.039 4.0 0.149 0.259 \/ \/
0 ] 8 0.017 5.0 0.140 0.121 \/
0123456789101112131415 9 0.007 6.0 0.132 0.050 \/
Measured n 10 0002 7.0 0125 0018 J
FIG. 6. Standard confidence belt for 90% C.L. central confi- 11 ~ 0.001 8.0 0.119 0.006 \/

dence intervals, for unknown Poisson signal mgan the presence

of a Poisson background with known melas 3.0.
IV. NEW INTERVALS FROM AN ORDERING PRINCIPLE

BASED ON LIKELIHOOD RATIOS

Although the word “conservative” in this context may be A. Poisson process with background

viewed by some as desirable, in fact it is an undesirable \ye pegin with a numerical example which occurs in the
property of a set of confidence intervals. Ideal intervals covetonstruction of confidence belts for a Poisson process with
the unknown true value at exactly the stated confidence: 90%ackground. The construction proceeds in the manner of Fig.
C.L. intervalsshouldfail to contain the true value 10% of the 1, where the measurementn Fig. 1 now corresponds to the
time. If one desires intervals which cover more than 90% ofmeasured total number of evemts

the time, the solution is not to add conservatism to the inter- Let the known mean background be= 3.0, and consider
vals, but rather to choose a higher confidence level. The dighe construction of the horizontal acceptance interval at sig-
creteness oh in the Poisson problem leads unavoidably tonal meanu=0.5. ThenP(n|x) is given by Eq.(3.2), and is
some conservatism, but this is unfortunate, not a virtue.  given in the second column of Table I.

The Poisson intervals in Figs. 5 and 6 suffer from the Now consider, for exampl@y=0. For the assumelol=3.,
same problems as the Gaussian intervals. First, if physicist Xhe probability of obtaining 0 events is 0.03uf= 0.5, which
uses the data to decide whether to use Fig. 5 or Fig. 6, thei§ quite low on an absolute scale. However, it is not so low
the resulting hybrid set can undercover. Second, there is When compared to the probabilit{0.05 of obtaining 0
well-known problem if, for exampleh=3.0 and no events €vents withb=3.0 andu=0.0, which is the alternate hy-
are observed. In that case, the confidence interval is again tiRQthesis with the greatest likelihood. rtio of likelihoods,
empty set. These problems are solved by the ordering prirl? this case 0.03/_0.05, is what we use as our ordering prin-
ciple given in Sec. IV. ciple vyhen selecting those valuesroto place in the accep-

For this Poisson case, there is an alternative set of intef@nce m_terval.
vals, given by Crow and Gardngt5], which is instructive . That s, f(_)r eacm., we Iethestpe that VaIL.'e of the mean
because it requires the full Neyman construction. In conSignal u which maximizesP(n|u); we require upes to be
structing these intervals, one minimizes the horizontal Iengﬂ?hySICaIIy allowed, i.e., non-negative in this case. Then

. : Mpes= Max(On—b), and is given in the third column of
of the acceptance regidm,,n,] at each value of:. Sincen Table I. We then computB(n|upee), Which is given in the

is a discrete variable, the concept of length in the horizonta}ourth column. The fifth column contains the ratio
direction can be well defined as the number of discrete '

points. Said another way, the points in the acceptance inter-

val at eachu are chosen in order of decreasiR¢n|w), until R=P(n|u)/P(n| tpes) 4.1
the sum ofP(n|u) meets or exceeds the desired QThere

are other technical details in the original papé&he Crow-

Gardner intervals are instructive because neither (Bdp)  and is the quantity on which our ordering principle is based.
nor Eq.(2.6) is satisfied, even as a conservative inequality.R is a ratio of two likelihoods: the likelihood of obtaining
(Recall thatx is identified with n in this section. For given the actual meap, and the likelihood of obtaining
a=0.9, P(n<n,|u) varies between 0.018 and 0.089, andgiven the best-fit physically allowed mean. Valuesnore
P(n>n,|u) varies between 0.011 and 0.078, in a mannerldded to the acceptance region for a giyein decreasing
dictated by the Neyman construction so that alwaysorder of R, until the sum ofP(n|u) meets or exceeds the
P(ne[ny,n,]|u)=0.9. Like Crow and Gardner, we use desired C.L. This ordering, for values nfnecessary to ob-
Neyman’s construction, but with a different ordering for tain total probability of 90%, is shown in the column labeled
choosing the points in the acceptance interval. “rank.” Thus, the acceptance region far=0.5 (analogous
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to a horizontal line segment in Fig.) lis the interval 15 —
n=[0,6]. Because of the discretenessrmgfthe acceptance 14 ]
region contains a summed probability greater than 90%; this 13 ]
is unavoidable no matter what the ordering principle, and 12
leads to confidence intervals which are conservative. i(l)
For comparison, in the column of Table I labeled “U.L.,” g 9 —
we place check marks at the valuesrofwvhich are in the S —
acceptance region of standard 90% C.L. upper limits for this E 7
example, and in the column labeled “central,” we place gﬂ 6 ]
check marks at the values ofwhich are in the acceptance & 5 [ [
region of standard 90% C.L central confidence intervals. 4 [ -
The construction proceeds by finding the acceptance re- 3 -
gion for all values ofyu, for the given value ob. With a 2 o —
computer, we perform the construction on a grid of discrete 1
values of u, in the interval[0, 50| in steps of 0.005. This 0 =

: . . ; : 0123456789I101112131415
suffices for the precision desir€¢f.01) in the end points of Measured n

confidence intervals. We find that a mild pathology arises as
a result of the fact that the observablés discrete. Whenthe ~ FIG. 7. Confidence belt based on our ordering principle, for
vertical dashed line is drawn at somg (in analogy with in _90% C.L. confidence inFervaIs for unknown _Poisson signal mean
Fig. 1), it can happen that the set of intersected horizontal" the Presence of a Poisson background with known niea8.0.
line segments is not simply connected. When this occurs we o o o
naturally take the confidence interval to havecorrespond- have eliminated. Dashed portions in the lower right indicate
ing to the bottommost segment intersected, and to haye results which must be taken with particular caution, corre-
corresponding to the topmost segment intersected. sponding to the italicized values in the tables. Dotted por-
We then repeat the construction for a selection of fixedions on the upper left indicate regions whergis non-zero.
values ofb. We find an additional mild pathology, again These corresponding values @f are shown in Fig. 9.
caused by the discretenessinwhen we compare the results ~ Figure 8 can be compared with the Bayesian calculation
for different values ob for fixed ng, the upper end point, N Fig. 28.8 of Ref[2] which uses a uniform prior fog, . A
is not always a decreasing function lof as would be ex- noticeable difference is that our curve fo~0 decreases as
pected. When this happens, we force the function to be nor function ofb, while the result of the Bayesian calculation
increasing, by lengthening selected confidence intervals aays constantat 2.3. The decreasing limit in our case re-
necessary. We have investigated this behavior, and compefiects the fact thaP(no| ) decreases dsincreases. We find
sated for it, over a fine grid ob in the range[0, 25| in that objections to this behavior are typically based on a mis-
increments of 0.004with some additional searching to even Placed Bayesian interpretation of classical intervals, namely

finer precision. the attempt to interpret them as statements aBgut;|n,).
Our compensation for the two pathologies mentioned in
the previous paragraphs adds slightly to our intervals’ con- B. Gaussian with a boundary at the origin

servatism, which however remains dominated by the un- . . : .
It is straightforward to apply our ordering principle to the

avoidable effects due to the discreteness.in .
The confidence belts resulting from our construction areother troublesome example of Sec. lll, the case of a Gaussian

shown in Fig. 7, which may be compared with Figs. 5 and 6reso|ution function[Eq.. (3.] for ., when p is _physically
At large n Fig' 7 is similar to Fig. 6: the background is bounded to non-negative values. In analogy with the Poisson

effectively subtracted without constraint, and our orderingcase’ for a particular, we let upeibe Fhe physflcally allowed
principle produces two-sided intervals which are approxi-value ©of wu for which P(x|x) is maximum. Then
mately central intervals. At smatl, the confidence intervals “bes— max(0x), and
from Fig. 7 automatically become upper limits gni.e., the
lower end pointw, is 0 for n<4 in this case. Thus, flip- p(xmbesgz[
flopping between Figs. 5 and 6 is replaced by one coherent
set of confidence intervaland no interval is the empty get

Tables II-IX give our confidence intervalg.;,u,] for  We then comput® in analogy to Eq(4.1), using Eqs(3.1)
the signal meanu for the most commonly used confidence and (4.2):
levels, namely 68.27%sometimes called 4 intervals by

12, x=0,

exp(—x2/2)/\2m, x<O0. 4.2

analogy with Gaussian interval©90%, 95%, and 99%. Val- P(x| ) exp(— (x—p)212), x=0

ues in italics indicate results which must be taken with par- R(x)= ————= ) 4.3
ticular caution, since the probability of obtaining the number P(X|woest | exp(xp—pu?/2), x<0.

of events observed or fewer is less than 1%, even=0.

(See Sec. IV C below. During our Neyman construction of confidence intervéls,

Figure 8 shows, fon=0-10, the value ofx, as a func- determines the order in which valuesfare added to the
tion of b, for 90% C.L. The small horizontal sections in the acceptance region at a particular valueuofin practice, this
curves are the result of the mild pathology mentioned aboveneans that for a given value q@f, one finds the interval
in which the original curves make a small dip, which we[X{,X5] such thatR(x;)=R(x,) and
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TABLE II. Our 68.27% C.L. intervals for the Poisson signal meanfor total events observed,, for known mean background
ranging from 0O to 5.

no\b 0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 5.0
0 0.00, 1.29 0.00, 0.80 0.00, 0.54 0.00, 0.41 0.00, 0.41 0.00, 0.25 0.00, 0.25 0.00, 0.21 0.0000@210.19
1 037, 275 0.00, 225 0.00, 1.75 0.00, 1.32 0.00, 0.97 0.00, 0.68 0.00, 0.50 0.00, 0.50 0.00, 0.36 0.00, 0.30
2 0.74, 425 0.44, 3.75 0.14, 3.25 0.00, 2.75 0.00, 2.25 0.00, 1.80 0.00, 1.41 0.00, 1.09 0.00, 0.81 0.00, 0.47
3 1.0, 5.30 0.80, 480 0.54, 430 0.32, 3.80 0.00, 3.30 0.00, 2.80 0.00, 2.30 0.00, 1.84 0.00, 1.45 0.00, 0.91
4 2.34, 6.78 1.84, 6.28 1.34, 578 0.91, 528 0.44, 478 0.25, 428 0.00, 3.78 0.00, 3.28 0.00, 2.78 0.00, 1.90
5 275,781 225, 731 175, 681 132, 631 0.97, 581 0.68, 531 045, 481 0.20, 431 0.00, 3.81 0.00, 2.81
6 3.82, 928 3.32 878 282 828 232 7.78 1.82 728 137, 6.78 1.01, 6.28 0.62, 578 0.36, 5.28 0.00, 4.28
7 4251030 3.75,9.80 3.25, 9.30 275, 8.80 2.25,6 830 180, 7.80 1.41, 7.30 1.09, 6.80 0.81, 6.30 0.32, 5.30
8 5.30,11.32 4.80,10.82 4.30,10.32 3.80, 9.82 3.30, 9.32 2.80, 882 2.30, 832 1.84, 7.82 145, 7.32 0.82, 6.32
9 6.33,12.79 5.83,12.29 5.33,11.79 4.83,11.29 4.33,10.79 3.83,10.29 3.33, 9.79 283, 9.29 233, 8.79 1.44, 7.79
10 6.78,13.81 6.28,13.31 5.78,12.81 5.28,12.31 4.78,11.81 4.28,11.31 3.78,10.81 3.28,10.31 2.78, 9.81 1.90, 8.81
11 7.81,1482 7.31,1432 6.81,13.82 6.31,13.32 5.81,12.82 5.31,12.32 4.81,11.82 4.31,11.32 3.81,10.82 2.81, 9.82
12 8.83,16.29 8.33,15.79 7.83,15.29 7.33,14.79 6.83,14.29 6.33,13.79 5.83,13.29 5.33,12.79 4.83,12.29 3.83,11.29
13 9.28,17.30 8.78,16.80 8.28,16.30 7.78,15.80 7.28,15.30 6.78,14.80 6.28,14.30 5.78,13.80 5.28,13.30 4.28,12.30
14 10.30,18.32 9.80,17.82 9.30,17.32 8.80,16.82 8.30,16.32 7.80,15.82 7.30,15.32 6.80,14.82 6.30,14.32 5.30,13.32
15 11.32,19.32 10.82,18.82 10.32,18.32 9.82,17.82 9.32,17.32 8.82,16.82 8.32,16.32 7.82,15.82 7.32,15.32 6.32,14.32
16 12.33,20.80 11.83,20.30 11.33,19.80 10.83,19.30 10.33,18.80 9.83,18.30 9.33,17.80 8.83,17.30 8.33,16.80 7.33,15.80
17 12.79,21.81 12.29,21.31 11.79,20.81 11.29,20.31 10.79,19.81 10.29,19.31 9.79,18.81 9.29,18.31 8.79,17.81 7.79,16.81
18 13.81,22.82 13.31,22.32 12.81,21.82 12.31,21.32 11.81,20.82 11.31,20.32 10.81,19.82 10.31,19.32 9.81,18.82 8.81,17.82
19 14.82,23.82 14.32,23.32 13.82,22.82 13.32,22.32 12.82,21.82 12.32,21.32 11.82,20.82 11.32,20.32 10.82,19.82 9.82,18.82
20 15.83,25.30 15.33,24.80 14.83,24.30 14.33,23.80 13.83,23.30 13.33,22.80 12.83,22.30 12.33,21.80 11.83,21.30 10.83,20.30

TABLE IIl. 68.27% C.L. intervals for the Poisson signal meanfor total events observen,, for known mean backgrouna ranging

from 6 to 15.
no\b 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

0 0.00, 0.128 0.00, 0.17 0.00, 0.27 0.00, 0.127 0.00, 0.16 0.00, 0.126 0.00, 0.16 0.00, 0.126 0.00, 0.16 0.00, 0.15

1 0.00, 0.24 0.00, 0.21 0.00, 0.20 0.00, 0.19 o0.00, 0.28 0.00, 0.127 0.00, 0.27 0.00, 0.27 0.00, 0.17 0.00, 0.126

2 0.00, 0.31 0.00, 0.27 0.00, 0.230.00, 0.21 0.00, 0.20 0.00, 0.29 o0.00, 0.19 0.00, 0.18 0.00, 0.28 0.00, 0.18

3 0.00, 0.69 0.00, 0.42 0.00, 0.31 0.00, 0.26 0.00, 0.P300, 0.22 0.00, 0.21 0.00, 0.20 0.00, 0.20 0.00, 0.19

4 0.00, 1.22 0.00, 0.69 0.00, 0.60 0.00, 0.38 0.00, 0.30 0.00, 0®60, 0.24 0.00, 0.23 0.00, 0.22 0.00, 0.21

5 0.00, 1.92 0.00, 1.23 0.00, 0.99 0.00, 0.60 0.00, 0.48 0.00, 0.35 0.00, 0.29 0.00,@@{ 0.24 0.00, 0.23

6 0.00, 3.28 0.00, 2.38 0.00, 1.65 0.00, 1.06 0.00, 0.63 0.00, 0.53 0.00, 0.42 0.00, 0.33 0.000.0@90.26

7 0.00, 430 0.00, 3.30 0.00, 2.40 0.00, 1.66 0.00, 1.07 0.00, 0.88 0.00, 0.53 0.00, 0.47 0.00, 0.38 0.00, 0.32

8 0.31, 5.32 0.00, 4.32 0.00, 3.32 0.00, 241 0.00, 1.67 0.00, 1.46 0.00, 0.94 0.00, 0.62 0.00, 0.48 0.00, 0.43

9 0.69, 6.79 0.27, 5.79 0.00, 4.79 0.00, 3.79 0.00, 2.87 0.00, 2.120 0.00, 1.46 0.00, 0.94 0.00, 0.78 0.00, 0.50
10 1.22, 7.81 0.69, 6.81 0.23, 5.81 0.00, 4.81 0.00, 3.81 0.00, 289 0.00, 2.11 0.00, 1.47 0.00, 1.03 0.00, 0.84
11 1.92,8.82 1.23, 782 0.60, 6.82 0.19, 5.82 0.00, 4.82 0.00, 3.82 0.00, 290 0.00, 2.12 0.00, 1.54 0.00, 1.31
12 2.83,10.29 1.94, 9.29 1.12, 829 0.60, 7.29 0.12, 6.29 0.00, 5.29 0.00, 4.29 0.00, 3.36 0.00, 2.57 0.00, 1.89
13  3.28,11.30 2.38,10.30 1.65, 9.30 1.06, 8.30 0.60, 7.30 0.05, 6.30 0.00, 5.30 0.00, 4.30 0.00, 3.37 0.00, 2.57
14  4.30,12.32 3.30,11.32 2.40,10.32 1.66, 9.32 1.07, 8.32 0.53, 7.32 0.00, 6.32 0.00, 5.32 0.00, 4.32 0.00, 3.38
15 5.32,13.32 4.32,12.32 3.32,11.32 2.41,10.32 1.67, 9.32 1.00, 8.32 0.53, 7.32 0.00, 6.32 0.00, 5.32 0.00, 4.32
16 6.33,14.80 5.33,13.80 4.33,12.80 3.33,11.80 2.43,10.80 1.46, 9.80 0.94, 8.80 0.47, 7.80 0.00, 6.80 0.00, 5.80
17 6.79,15.81 5.79,14.81 4.79,13.81 3.79,12.81 2.87,11.81 2.10,10.81 1.46, 9.81 0.94, 8.81 0.48, 7.81 0.00, 6.81
18 7.81,16.82 6.81,15.82 5.81,14.82 4.81,13.82 3.81,12.82 2.89,11.82 2.11,10.82 1.47, 9.82 0.93, 882 0.43, 7.82
19 8.82,17.82 7.82,16.82 6.82,15.82 5.82,14.82 4.82,13.82 3.82,12.82 2.90,11.82 2.12,10.82 1.48, 9.82 0.84, 8.82
20 9.83,19.30 8.83,18.30 7.83,17.30 6.83,16.30 5.83,15.30 4.83,14.30 3.83,13.30 2.91,12.30 2.12,11.30 1.31,10.30
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TABLE IV. 90% C.L. intervals for the Poisson signal meanfor total events observed,, for known mean backgrouraranging from

Oto 5.
no\b 0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0 5.0
0 0.00, 2.44 0.00, 1.94 0.00, 1.612 0.00, 1.33 0.00, 1.26 0.00, 1.18 0.00, 1.08 0.00, 1.06 0.0M.a00D.98
1 0.11, 436 0.00, 3.86 0.00, 3.36 0.00, 291 0.00, 253 0.00, 2.19 0.00, 1.88 0.00, 1.59 0.00, 1.39 0.00, 1.22
2 053,591 0.03 541 0.00, 491 0.00, 441 0.00, 3.91 0.00, 3.45 0.00, 3.04 0.00, 2.67 0.00, 2.33 0.00, 1.73
3 1.0, 742 0.60, 6.92 0.10, 6.42 0.00, 5.92 0.00, 5.42 0.00, 4.92 0.00, 4.42 0.00, 3.95 0.00, 3.53 0.00, 2.78
4 1.47,68.60 1.17, 8.10 0.74, 7.60 0.24, 7.10 0.00, 6.60 0.00, 6.10 0.00, 5.60 0.00, 5.10 0.00, 4.60 0.00, 3.60
5 1.84,999 153,949 1.25 899 0.93 849 0.43, 799 0.00, 7.49 0.00, 6.99 0.00, 6.49 0.00, 5.99 0.00, 4.99
6 2.21,11.47 1.90,10.97 1.61,10.47 1.33, 9.97 1.08, 9.47 0.65, 8.97 0.15, 8.47 0.00, 7.97 0.00, 7.47 0.00, 6.47
7 3.56,12.53 3.06,12.03 2.56,11.53 2.09,11.03 1.59,10.53 1.18,10.03 0.89, 9.53 0.39, 9.03 0.00, 8.53 0.00, 7.53
8 3.96,13.99 3.46,13.49 2.96,12.99 2.51,12.49 2.14,11.99 1.81,11.49 1.51,10.99 1.06,10.49 0.66, 9.99 0.00, 8.99
9 4.36,15.30 3.86,14.80 3.36,14.30 2.91,13.80 2.53,13.30 2.19,12.80 1.88,12.30 1.59,11.80 1.33,11.30 0.43,10.30
10 5.50,16.50 5.00,16.00 4.50,15.50 4.00,15.00 3.50,14.50 3.04,14.00 2.63,13.50 2.27,13.00 1.94,12.50 1.19,11.50
11 591,17.81 5.41,17.31 4.91,16.81 4.41,16.31 3.91,15.81 3.45,15.31 3.04,1481 2.67,14.31 2.33,13.81 1.73,12.81
12 7.01,19.00 6.51,1850 6.01,18.00 5.51,17.50 5.01,17.00 4.51,16.50 4.01,16.00 3.54,15.50 3.12,15.00 2.38,14.00
13 7.42,20.05 6.92,19.55 6.42,19.05 5.92,1855 5.42,18.05 4.92,17.55 4.42,17.05 3.95,16.55 3.53,16.05 2.78,15.05
14  8.50,21.50 8.00,21.00 7.50,20.50 7.00,20.00 6.50,19.50 6.00,19.00 5.50,18.50 5.00,18.00 4.50,17.50 3.59,16.50
15 9.48,22.52 8.98,22.02 8.48,21.52 7.98,21.02 7.48,20.52 6.98,20.02 6.48,19.52 5.98,19.02 5.48,18.52 4.48,17.52
16 9.99,23.99 9.49,23.49 8.99,22.99 8.49,22.49 7.99,21.99 7.49,21.49 6.99,20.99 6.49,20.49 5.99,19.99 4.99,18.99
17 11.04,25.02 10.54,24.52 10.04,24.02 9.54,23.52 9.04,23.02 8.54,22.52 8.04,22.02 7.54,21.52 7.04,21.02 6.04,20.02
18 11.47,26.16 10.97,25.66 10.47,25.16 9.97,24.66 9.47,24.16 8.97,23.66 8.47,23.16 7.97,22.66 7.47,22.16 6.47,21.16
19 1251,27.51 12.01,27.01 11.51,26.51 11.01,26.01 10.51,25.51 10.01,25.01 9.51,24.51 9.01,24.01 8.51,23.51 7.51,22.51
20 13.55,28.52 13.05,28.02 12.55,27.52 12.05,27.02 11.55,26.52

11.05,26.02 10.55,25.52

10.05,25.02 9.55,24.52 8.55,23.52

TABLE V. 90% C.L. intervals for the Poisson signal meanfor total events observad,, for known mean backgrourt ranging from

6 to 15.
no\b 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

0 0.00, 0.97 0.00, 0.95 0.00, 0.94 0.00, 0.94 0.00, 0.93 0.00, 0.93 0.00, 0.92 0.00, 0.92 0.00, 0.92 0.00, 0.92

1 0.00, 1.14 0.00, 1.10 0.00, 1.07 0.00, 1.05 o0.00, 1.03 0.00, 1.01 o0.00, 1.00 0.00, 0.99 0.00, 0.99 0.00, 0.98

2 0.00, 1.57 0.00, 1.38 0.00, 1.2/0.00, 1.21 0.00, 1.15 0.00, 1.11 0.00, 1.09 0.00, 1.08 0.00, 1.06 0.00, 1.05

3 0.00, 2.14 0.00, 1.75 0.00, 1.49 0.00, 1.37 0.00, 1.»00, 1.24 0.00, 1.21 0.00, 1.18 0.00, 1.15 0.00, 1.14

4 0.00, 2.83 0.00, 256 0.00, 1.98 0.00, 1.82 0.00, 1.57 0.00, 1360, 1.37 0.00, 1.31 0.00, 1.27 0.00, 1.24

5 0.00, 4.07 0.00, 3.28 0.00, 2.60 0.00, 2.38 0.00, 1.85 0.00, 1.70 0.00, 1.58 0.00,Q08 1.39 0.00, 1.32

6 0.00, 547 0.00, 454 0.00, 3.73 0.00, 3.02 0.00, 240 0.00, 2.21 0.00, 1.86 0.00, 1.67 0.000.0G651.47

7 0.00, 6.53 0.00, 5.53 0.00, 458 0.00, 3.77 0.00, 3.26 0.00, 2.81 0.00, 2.23 0.00, 2.07 0.00, 1.86 0.00, 1.69

8 0.00, 7.99 0.00, 6.99 0.00, 5.99 0.00, 5.05 0.00, 4.22 0.00, 3.49 0.00, 2.83 0.00, 2.62 0.00, 2.11 0.00, 1.95

9 0.00, 9.30 0.00, 830 0.00, 7.30 0.00, 6.30 0.00, 5.30 0.00, 430 0.00, 3.93 0.00, 3.25 0.00, 2.64 0.00, 2.45
10 0.22,10.50 0.00, 9.50 0.00, 8.50 0.00, 7.50 0.00, 6.50 0.00, 5.56 0.00, 4.71 0.00, 3.95 0.00, 3.27 0.00, 3.00
11 1.01,11.81 0.02,10.81 0.00, 9.81 0.00, 8.81 0.00, 7.81 0.00, 6.81 0.00, 5.81 0.00, 4.81 0.00, 4.39 0.00, 3.69
12 1.57,13.00 0.83,12.00 0.00,11.00 0.00,10.00 0.00, 9.00 0.00, 8.00 0.00, 7.00 0.00, 6.05 0.00, 5.19 0.00, 4.42
13  2.14,14.05 1.50,13.05 0.65,12.05 0.00,11.05 0.00,10.05 0.00, 9.05 0.00, 8.05 0.00, 7.05 0.00, 6.08 0.00, 5.22
14  2.83,15.50 2.13,1450 1.39,13.50 0.47,12.50 0.00,11.50 0.00,10.50 0.00, 9.50 0.00, 8,50 0.00, 7.50 0.00, 6.55
15 3.48,16.52 2.56,15.52 1.98,14.52 1.26,13.52 0.30,12.52 0.00,11.52 0.00,10.52 0.00, 9.52 0.00, 8,52 0.00, 7.52
16 4.07,17.99 3.28,16.99 2.60,15.99 1.82,14.99 1.13,13.99 0.14,12.99 0.00,11.99 0.00,10.99 0.00, 9.99 0.00, 8.99
17 5.04,19.02 4.11,18.02 3.32,17.02 2.38,16.02 1.81,15.02 0.98,14.02 0.00,13.02 0.00,12.02 0.00,11.02 0.00,10.02
18 5.47,20.16 4.54,19.16 3.73,18.16 3.02,17.16 2.40,16.16 1.70,15.16 0.82,14.16 0.00,13.16 0.00,12.16 0.00,11.16
19 6.51,21.51 5.51,20.51 4.58,19.51 3.77,1851 3.05,17.51 2.21,16.51 1.58,1551 0.67,14.51 0.00,13.51 0.00,12.51
20 7.55,22.52 6.55,21.52 5.55,20.52 4.55,19.52

3.55,18.52 2.81,17.52 2.23,16.52 1.48,15.52 0.53,14.52 0.00,13.52
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TABLE VI. 95% C.L. intervals for the Poisson signal meanfor total events observed,, for known mean backgrouraranging from

0 to 5.
no\b 0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 5.0
0 0.00, 3.09 0.00, 263 0.00, 2.33 0.00, 205 0.00, 1.78 0.00, 1.78 0.00, 1.63 0.00, 1.63 0.00M.a%71.54
1 0.05, 5.14 0.00, 4.64 0.00, 4.14 0.00, 3.69 0.00, 3.30 0.00, 2.95 0.00, 2.63 0.00, 2.33 0.00, 2.08 0.00, 1.88
2 0.36, 6.72 0.00, 6.22 0.00, 5.72 0.00, 5.22 0.00, 4.72 0.00, 4.25 0.00, 3.84 0.00, 3.46 0.00, 3.11 0.00, 2.49
3 0.82, 8.25 0.32, 7.75 0.00, 7.25 0.00, 6.75 0.00, 6.25 0.00, 5.75 0.00, 5.25 0.00, 4.78 0.00, 4.35 0.00, 3.58
4 1.37, 9.76 0.87, 9.26 0.37, 8.76 0.00, 8.26 0.00, 7.76 0.00, 7.26 0.00, 6.76 0.00, 6.26 0.00, 5.76 0.00, 4.84
5 1.84,11.26 1.47,10.76 0.97,10.26 0.47, 9.76 0.00, 9.26 0.00, 8.76 0.00, 8.26 0.00, 7.76 0.00, 7.26 0.00, 6.26
6 2.21,12.75 1.90,12.25 1.61,11.75 1.11,11.25 0.61,10.75 0.11,10.25 0.00, 9.75 0.00, 9.25 0.00, 8.75 0.00, 7.75
7 2.58,13.81 2.27,13.31 1.97,12.81 1.69,12.31 1.29,11.81 0.79,11.31 0.29,10.81 0.00,10.31 0.00, 9.81 0.00, 8.81
8 2.94,15.29 2.63,14.79 2.33,14.29 2.05,13.79 1.78,13.29 1.48,12.79 0.98,12.29 0.48,11.79 0.00,11.29 0.00,10.29
9 4.36,16.77 3.86,16.27 3.36,15.77 2.91,15.27 2.46,14.77 1.96,14.27 1.62,13.77 1.20,13.27 0.70,12.77 0.00,11.77
10 4,75,17.82 4.25,17.32 3.75,16.82 3.30,16.32 2.92,15.82 2.57,15.32 2.25,14.82 1.82,14.32 1.43,13.82 0.43,12.82
11 5.14,19.29 4.64,18.79 4.14,18.29 3.69,17.79 3.30,17.29 2.95,16.79 2.63,16.29 2.33,15.79 2.04,15.29 1.17,14.29
12 6.32,20.34 5.82,19.84 5.32,19.34 4.82,18.84 4.32,18.34 3.85,17.84 3.44,17.34 3.06,16.84 2.69,16.34 1.88,15.34
13 6.72,21.80 6.22,21.30 5.72,20.80 5.22,20.30 4.72,19.80 4.25,19.30 3.84,18.80 3.46,18.30 3.11,17.80 2.47,16.80
14 7.84,22.94 7.34,22.44 6.84,21.94 6.34,21.44 5.84,20.94 5.34,20.44 4.84,19.94 4.37,19.44 3.94,18.94 3.10,17.94
15 8.25,24.31 7.75,23.81 7.25,23.31 6.75,22.81 6.25,22.31 5.75,21.81 5.25,21.31 4.78,20.81 4.35,20.31 3.58,19.31
16 9.34,25.40 8.84,24.90 8.34,24.40 7.84,23.90 7.34,23.40 6.84,22.90 6.34,22.40 5.84,21.90 5.34,21.40 4.43,20.40
17 9.76,26.81 9.26,26.31 8.76,25.81 8.26,25.31 7.76,24.81 7.26,24.31 6.76,23.81 6.26,23.31 5.76,22.81 4.84,21.81
18 10.84,27.84 10.34,27.34 9.84,26.84 9.34,26.34 8.84,25.84 8.34,25.34 7.84,24.84 7.34,24.34 6.84,23.84 5.84,22.84
19 11.26,29.31 10.76,28.81 10.26,28.31 9.76,27.81 9.26,27.31 8.76,26.81 8.26,26.31 7.76,25.81 7.26,25.31 6.26,24.31
20 12.33,30.33 11.83,29.83 11.33,29.33 10.83,28.83 10.33,28.33 9.83,27.83 9.33,27.33 8.83,26.83 8.33,26.33 7.33,25.33
Xy regions all constructed, we then read off the confidence in-
f P(X|u)dx=a. (4.4

X1

tervals[ w1, 5] for eachx, as in Fig. 1.

Table X contains the results for representative measured
We solve forx; andx, numerically to the desired precision, values and confidence levels. Figure 10 shows the confidence
for eachu in a grid with 0.001 spacing. With the acceptancebelt for 90% C.L.

TABLE VII. 95% C.L. intervals for the Poisson signal megan for total events observed,, for known mean backgrouri ranging

from 6 to 15.
ng\b 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

0 0.00, 1.52 0.00, 1.51 0.00, 1.50 0.00, 1.49 0.00, 1.49 0.00, 1.48 0.00, 1.48 0.00, 1.48 0.00, 1.47 0.00, 1.47

1 0.00, 1.78 0.00, 1.73 0.00, 1.69 0.00, 1.66 0.00, 1.64 0.00, 1.61 0.00, 1.60 0.00, 1.59 0.00, 1.58 0.00, 1.56

2 0.00, 2.28 0.00, 2.11 0.00, 1.980.00, 1.86 0.00, 1.812 0.00, 1.77 0.00, 1.74 0.00, 1.72 0.00, 1.70 0.00, 1.67

3 0.00, 291 0.00, 2.69 0.00, 2.37 0.00, 2.17 0.00, 2.0600, 1.98 0.00, 1.93 0.00, 1.89 0.00, 1.82 0.00, 1.80

4 0.00, 405 0.00, 3.35 0.00, 3.01 0.00, 2.54 0.00, 2.37 0.00, 2®60, 2.11 0.00, 2.04 0.00, 1.99 0.00, 1.95

5 0.00, 5.33 0.00, 452 0.00, 3.79 0.00, 3.15 0.00, 2.94 0.00, 2.65 0.00, 2.43 0.00,®EH 2.20 0.00, 2.13

6 0.00, 6.75 0.00, 5.82 0.00, 499 0.00, 4.24 0.00, 3.57 0.00, 3.14 0.00, 2.78 0.00, 2.62 0.000.0@82.35

7 0.00, 7.81 0.00, 6.81 0.00, 5.87 0.00, 5.03 0.00, 4.28 0.00, 4.00 0.00, 3.37 0.00, 3.15 0.00, 2.79 0.00, 2.59

8 0.00, 9.29 0.00, 8.29 0.00, 7.29 0.00, 6.35 0.00, 5.50 0.00, 4.73 0.00, 4.03 0.00, 3.79 0.00, 3.20 0.00, 3.02

9 0.00,10.77 0.00, 9.77 0.00, 8.77 0.00, 7.77 0.00, 6.82 0.00, 5.96 0.00, 5.18 0.00, 4.47 0.00, 3.81 0.00, 3.60
10 0.00,11.82 0.00,10.82 0.00, 9.82 0.00, 8.82 0.00, 7.82 0.00, 6.87 0.00, 6.00 0.00, 5.21 0.00, 459 0.00, 4.24
11 0.17,13.29 0.00,12.29 0.00,11.29 0.00,10.29 0.00, 9.29 0.00, 8.29 0.00, 7.34 0.00, 6.47 0.00, 5.67 0.00, 4.93
12 0.92,14.34 0.00,13.34 0.00,12.34 0.00,11.34 0.00,10.34 0.00, 9.34 0.00, 8.34 0.00, 7.37 0.00, 6.50 0.00, 5.70
13 1.68,15.80 0.69,14.80 0.00,13.80 0.00,12.80 0.00,11.80 0.00,10.80 0.00, 9.80 0.00, 8.80 0.00, 7.85 0.00, 6.96
14 2.28,16.94 1.46,15.94 0.46,14.94 0.00,13.94 0.00,12.94 0.00,11.94 0.00,10.94 0.00, 9.94 0.00, 8.94 0.00, 7.94
15 2.91,18.31 2.11,17.31 1.25,16.31 0.25,15.31 0.00,14.31 0.00,13.31 0.00,12.31 0.00,11.31 0.00,10.31 0.00, 9.31
16 3.60,19.40 2.69,18.40 1.98,17.40 1.04,16.40 0.04,15.40 0.00,14.40 0.00,13.40 0.00,12.40 0.00,11.40 0.00,10.40
17 4.05,20.81 3.35,19.81 2.63,18.81 1.83,17.81 0.83,16.81 0.00,15.81 0.00,14.81 0.00,13.81 0.00,12.81 0.00,11.81
18 4.91,21.84 4.11,20.84 3.18,19.84 2.53,18.84 1.63,17.84 0.63,16.84 0.00,15.84 0.00,14.84 0.00,13.84 0.00,12.84
19 5.33,23.31 4.52,22.31 3.79,21.31 3.15,20.31 2.37,19.31 1.44,18.31 0.44,17.31 0.00,16.31 0.00,15.31 0.00,14.31
20 6.33,24.33 5.39,23.33 4.57,22.33 3.82,21.33 2.94,20.33 2.23,19.33 1.25,18.33 0.25,17.33 0.00,16.33 0.00,15.33
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TABLE VIIl. 99% C.L. intervals for the Poisson signal mean for total events observenl,, for known mean backgrounil ranging

from O to 5.
no\b 0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0 5.0
0 0.00, 4.74 0.00, 4.24 0.00, 3.80 0.00, 3.50 0.00, 3.26 0.00, 3.26 0.00, 3.05 0.00, 3.05 0.000.2®82.94
1 0.01, 6.91 0.00, 6.41 0.00, 5.91 0.00, 5.41 0.00, 491 0.00, 4.48 0.00, 4.14 0.00, 4.09 0.00, 3.89 0.00, 3.59
2 0.15, 8.71 0.00, 8.21 0.00, 7.71 0.00, 7.21 0.00, 6.71 0.00, 6.24 0.00, 5.82 0.00, 5.42 0.00, 5.06 0.00, 4.37
3 0.44,10.47 0.00, 9.97 0.00, 9.47 0.00, 8.97 0.00, 8.47 0.00, 7.97 0.00, 7.47 0.00, 6.97 0.00, 6.47 0.00, 5.57
4 0.82,12.23 0.32,11.73 0.00,11.23 0.00,10.73 0.00,10.23 0.00, 9.73 0.00, 9.23 0.00, 8.73 0.00, 8.23 0.00, 7.30
5 1.28,13.75 0.78,13.25 0.28,12.75 0.00,12.25 0.00,11.75 0.00,11.25 0.00,10.75 0.00,10.25 0.00, 9.75 0.00, 8.75
6 1.79,15.27 1.29,14.77 0.79,14.27 0.29,13.77 0.00,13.27 0.00,12.77 0.00,12.27 0.00,11.77 0.00,11.27 0.00,10.27
7 2.33,16.77 1.83,16.27 1.33,15.77 0.83,15.27 0.33,14.77 0.00,14.27 0.00,13.77 0.00,13.27 0.00,12.77 0.00,11.77
8 2.91,18.27 2.41,17.77 191,17.27 1.41,16.77 0.91,16.27 0.41,15.77 0.00,15.27 0.00,14.77 0.00,14.27 0.00,13.27
9 3.31,19.46 3.00,18.96 2.51,1846 2.01,17.96 1.51,17.46 1.01,16.96 0.51,16.46 0.01,15.96 0.00,15.46 0.00,14.46
10 3.68,20.83 3.37,20.33 3.07,19.83 2.63,19.33 2.13,18.83 1.63,18.33 1.13,17.83 0.63,17.33 0.13,16.83 0.00,15.83
11 4.05,22.31 3.73,21.81 3.43,21.31 3.14,20.81 2.77,20.31 2.27,19.81 1.77,19.31 1.27,18.81 0.77,18.31 0.00,17.31
12 4.41,23.80 4.10,23.30 3.80,22.80 3.50,22.30 3.22,21.80 2.93,21.30 2.43,20.80 1.93,20.30 1.43,19.80 0.43,18.80
13 5.83,24.92 5.33,24.42 4.83,23.92 4.33,23.42 3.83,22.92 3.33,22.42 3.02,21.92 2.60,21.42 2.10,20.92 1.10,19.92
14 6.31,26.33 5.81,25.83 5.31,25.33 4.86,24.83 4.46,24.33 4.10,23.83 3.67,23.33 3.17,22.83 2.78,22.33 1.78,21.33
15 6.70,27.81 6.20,27.31 5.70,26.81 5.24,26.31 4.84,25.81 4.48,25.31 4.14,24.81 3.82,24.31 3.42,23.81 2.48,22.81
16 7.76,28.85 7.26,28.35 6.76,27.85 6.26,27.35 5.76,26.85 5.26,26.35 4.76,25.85 4.26,25.35 3.89,24.85 3.15,23.85
17 8.32,30.33 7.82,29.83 7.32,29.33 6.82,28.83 6.32,28.33 5.85,27.83 5.42,27.33 5.03,26.83 4.67,26.33 3.73,25.33
18 8.71,31.81 8.21,31.31 7.71,30.81 7.21,30.31 6.71,29.81 6.24,29.31 5.82,28.81 5.42,28.31 5.06,27.81 4.37,26.81
19 9.88,32.85 9.38,32.35 8.88,31.85 8.38,31.35 7.88,30.85 7.38,30.35 6.88,29.85 6.40,29.35 5.97,28.85 5.01,27.85
20 10.28,34.32 9.78,33.82 9.28,33.32 8.78,32.82 8.28,32.32 7.78,31.82 7.28,31.32 6.81,30.82 6.37,30.32 5.57,29.32

It is instructive to compare Fig. 10 with Fig. 3. At large

sided confidence intervals to an upper confidence limit given

the confidence intervalsuq,u,] are the same in both plots, by u,. The point of this transition is fixed by the calculation
since that is far away from the constraining boundary. Belowof the acceptance interval fop=0; the solution has
x=1.28, the lower end point of the new confidence intervalsx;,= -, and so Eq.(4.4) is satisfied byx,=1.28 when
is zero, so that there is automatically a transition from two-a=90%. Of course, one is not obligated to claim a non-null

TABLE IX. 99% C.L. intervals for the Poisson signal meanfor total events observed,, for known mean backgrouraranging from

6 to 15.
ng\b 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

0 0.00, 291 0.00, 290 0.00, 2.89 0.00, 2.88 0.00, 2.88 0.00, 2.87 0.00, 2.87 0.00, 2.86 0.00, 2.86 0.00, 2.86

1 0.00, 3.42 0.00, 3.31 0.00, 3.21 0.00, 3.18 0.00, 3.15 0.00, 3.11 0.00, 3.09 0.00, 3.07r 0.00, 3.06 0.00, 3.03

2 0.00, 4.13 0.00, 3.89 0.00, 3.700.00, 3.56 0.00, 3.44 0.00, 3.39 0.00, 3.35 0.00, 3.32 0.00, 3.26 0.00, 3.23

3 0.00, 5.25 0.00, 459 0.00, 4.35 0.00, 4.06 0.00, 3.800, 3.77 0.00, 3.65 0.00, 3.56 0.00, 3.51 0.00, 3.47

4 0.00, 6.47 0.00, 5.73 0.00, 5.04 0.00, 4.79 0.00, 4.39 0.00, 40.@0, 4.02 0.00, 3.91 0.00, 3.82 0.00, 3.74

5 0.00, 7.81 0.00, 6.97 0.00, 6.21 0.00, 5.50 0.00, 5.17 0.00, 4.67 0.00, 4.42 0.00,:@®} 4.11 0.00, 4.01

6 0.00, 9.27 0.00, 8.32 0.00, 7.47 0.00, 6.68 0.00, 5.96 0.00, 5.46 0.00, 5.05 0.00, 4.83 0.0000634.44

7 0.00,10.77 0.00, 9.77 0.00, 8.82 0.00, 7.95 0.00, 7.16 0.00, 6.42 0.00, 5.73 0.00, 5.48 0.00, 5.12 0.00, 4.82

8 0.00,12.27 0.00,11.27 0.00,10.27 0.00, 9.31 0.00, 8.44 0.00, 7.63 0.00, 6.88 0.00, 6.18 0.00, 5.83 0.00, 5.29

9 0.00,13.46 0.00,12.46 0.00,11.46 0.00,10.46 0.00, 9.46 0.00, 8.50 0.00, 7.69 0.00, 7.34 0.00, 6.62 0.00, 5.95
10 0.00,14.83 0.00,13.83 0.00,12.83 0.00,11.83 0.00,10.83 0.00, 9.87 0.00, 8.98 0.00, 8.16 0.00, 7.39 0.00, 7.07
11 0.00,16.31 0.00,15.31 0.00,14.31 0.00,13.31 0.00,12.31 0.00,11.31 0.00,10.35 0.00, 9.46 0.00, 8.63 0.00, 7.84
12 0.00,17.80 0.00,16.80 0.00,15.80 0.00,14.80 0.00,13.80 0.00,12.80 0.00,11.80 0.00,10.83 0.00, 9.94 0.00, 9.09
13  0.10,18.92 0.00,17.92 0.00,16.92 0.00,15.92 0.00,14.92 0.00,13.92 0.00,12.92 0.00,11.92 0.00,10.92 0.00, 9.98
14  0.78,20.33 0.00,19.33 0.00,18.33 0.00,17.33 0.00,16.33 0.00,15.33 0.00,14.33 0.00,13.33 0.00,12.33 0.00,11.36
15 1.48,21.81 0.48,20.81 0.00,19.81 0.00,18.81 0.00,17.81 0.00,16.81 0.00,15.81 0.00,14.81 0.00,13.81 0.00,12.81
16 2.18,22.85 1.18,21.85 0.18,20.85 0.00,19.85 0.00,18.85 0.00,17.85 0.00,16.85 0.00,15.85 0.00,14.85 0.00,13.85
17 2.89,24.33 1.89,23.33 0.89,22.33 0.00,21.33 0.00,20.33 0.00,19.33 0.00,18.33 0.00,17.33 0.00,16.33 0.00,15.33
18 3.53,25.81 2.62,24.81 1.62,23.81 0.62,22.81 0.00,21.81 0.00,20.81 0.00,19.81 0.00,18.81 0.00,17.81 0.00,16.81
19 4.13,26.85 3.31,25.85 2.35,24.85 1.35,23.85 0.35,22.85 0.00,21.85 0.00,20.85 0.00,19.85 0.00,18.85 0.00,17.85
20 4.86,28.32 3.93,27.32 3.08,26.32 2.08,25.32 1.08,24.32 0.08,23.32 0.00,22.32 0.00,21.32 0.00,20.32 0.00,19.32
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20 (rTTT T T T T T T As x decreases, the upper limits from our method de-
crease, asymptotically going agxl/for large negativex. As

in the Poisson case, particular caution is necessary when in-
terpreting limits obtained from measured valuescafthich

are unlikely for all physicaj.

SR

—
w

—_
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C. Decoupling of goodness-of-fit C.L. from the confidence
interval C.L.

10 eveats.observe

An advantage of our intervals compared to the standard
classical intervals is that ours effectively decouple the confi-
dence level used for a goodness-of-fit test from the confi-
S ™ dence level used for confidence interval construction.

N e ,3, To elaborate, let us first recall the procedure used in a

20 standard “easy” x- fit (free from constraints, background,

etc), for example the fit of a one-parameter curve to a set of

FIG. 8. Upper endu, of our 90% C.L. confidence intervals points with Gaussian em,)r bars. One examine_S)IF'Ebe' .

[ 1.p5], for unknown Poisson signal meanin the presence of an  tWeen the data and the fitted curve, as a function of the fit
expected Poisson background with known meaiThe curves for ~Parameter. Thealueof x* at its minimum is used to deter-
the cases), from O through 10 are plotted. Dotted portions on the Mine the goodness-of-fit: using standard tables, one can con-
upper left indicate regions whege; is non-zero(and shown in the vert this value to a goodness-of-fit confidence level which
following figure). Dashed portions in the lower right indicate re- tells one the quality of the fit. A very poor fit means that the
gions where the probability of obtaining the number of events obinformation on the fitted parameter is suspect: the experi-
served or fewer is less than 1%, everuif0. mental uncertainties may not be assessed properly, the func-
tional form of the parametrized curve may be wrong, or, in

discovery just because the 90% C.L. confidence interval dod§€ most general terms, the hypotheses being considered may
not contain zero. With a proper understanding of what conl0t be the relevant ones. _ _
fidence intervals aréSec. Il B, one realizes that they do not  If the value of the minimuny? is considered acceptable,
indicate the degree of belief. then one examines trehapeof x? (as a function of the fit
Our 90% C.L. upper limit ak=0 is u,=1.64, which, parameter.near its minimum, in or.der to obtain @pprqxp
interestingly, is the standard 95% C.L. upper limit, ratherMate confidence interval for the fit parameteraaty desired
than u,=1.28, which is the standard 90% C.L. upper limit. conﬂdenc_e level. This proc_edure is powerful becal_Jse it does
The departure from the standard 90% C.L. upper limits reN0t permit random fluctuations that favor no particular pa-
flects the fact, mentioned above, that they provide frequentig@meter value to influence the confidence interval. The two
coverage only when the decision to quote an upper limit jconfidence levels invoked in this gxample are then mdepen_-
not based on the data. Our method repairs the undercovera%@mi for example, one may require that the goodness-of-fit

loosening the upper limits around-=0. acceptable, while quoting a 68% C.L. confidence interval for

the fitted parameter.

The problems with the standard classical intervals in Sec.
Il can be viewed from the point of view that they effectively
constrain the C.L. used for the goodness-of-fit to be related
to that used for the the confidence interval. In both the
Gaussian and the Poisson upper limit examples, consider, for
example, 90% as the C.L. for upper limits; the confidence
interval is the empty sdbr outside the physical region, some
prefer to say some fraction of the time which is determined
by this choice of C.L. For example, if the true mean is zero
in the constrained Gaussian problem, then the empty set is
obtained 10% of the time from Fig. 2; if the true mean is

\ zero in the Poisson-with-background problem, the empty set

Upper end of cont. int. for

5 10 15
Mean Expected Background b

20 LI L LI L LI L LI

—
w

—_
<

()]
T T T T

Lower end of contf. int. for u

can be obtained up to 10% of the time from confidence belts
such as Fig. %depending on the mean backgroumdnd on
N D how discreteness affects the intervals for thatAn empty-

0

20 set confidence interval has the same effect as failing a
goodness-of-fit test: no useful confidence interval is inferred.
FIG. 9. Lower endu, of our 90% C.L. confidence intervals With the standard confidence intervals, one is forced to use a
[ 1, 12], for unknown Poisson signal meanin the presence of an SpeCiﬁC C.L. for this effective gOOdneSS-Of-fit test, COUpled to
expected Poisson background with known mbaiThe curves cor- the C.L. used for interval construction. We believe this to be
respond to the dotted regions in the plotsof of the previous most undesirable and at the heart of the community’s dissat-
figure, with againn,= 10 for the upper right curve, etc. isfaction with the standard intervals.

5 10 15
Mean Expected Background b
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TABLE X. Our confidence intervals for the meanof a Gaussian, constrained to be non-negative, as a function of the measured mean
Xg, for commonly used confidence levels. Italicized intervals correspond to cases where the goodness-of-fit pr@eility O is less
than 1%. All numbers are in units of.

Xo 68.27% C.L. 90% C.L. 95% C.L. 99% C.L. Xq 68.27% C.L. 90% C.L. 95% C.L. 99% C.L.

—-3.0 0.00,0.04 0.00,0.26 0.00,0.42 0.00,0.800.1 0.00,1.10 0.00,1.74 0.00,2.06 0.00, 2.68
—-29 0.00,0.04 0.00,0.27 0.00,0.44 0.00,0.820.2 0.00,1.20 0.00,1.84 0.00,2.16 0.00,2.78
—2.8 0.00,0.04 0.00,0.28 0.00,0.45 0.00,0.840.3 0.00,1.30 0.00,1.94 0.00,2.26 0.00, 2.88
—2.7 0.00,0.04 0.00,0.29 0.00,0.47 0.00,0.870.4 0.00,1.40 0.00,2.04 0.00,2.36 0.00, 2.98
—2.6 0.00,0.05 0.00,0.30 0.00,0.48 0.00,0.890.5 0.02,1.50 0.00,2.14 0.00,2.46 0.00, 3.08
—-2.5 0.00,0.05 0.00,0.32 0.00,050 0.00,0.920.6 0.07,1.60 0.00,2.24 0.00,256 0.00, 3.18
—-24 0.00,0.05 0.00,0.33 0.00,052 0.00,0.950.7 0.11,1.70 0.00,2.34 0.00,2.66 0.00, 3.28
—2.3 0.00,0.05 0.00,0.34 0.00,0.54 0.00,0.990.8 0.15,1.80 0.00,2.44 0.00,2.76 0.00, 3.38
—2.2 0.00,0.06 0.00,0.36 0.00,0.56 0.00,1.020.9 0.19,1.90 0.00,254 0.00,2.86 0.00, 3.48
—2.1 0.00,0.06 0.00,0.38 0.00,0.59 0.00,1.061.0 0.24,2.00 0.00,2.64 0.00,2.96 0.00, 3.58
—2.0 0.00,0.07 0.00,0.40 0.00,0.62 0.00,1.101.1 0.30, 220 0.00,2.74 0.00,3.06 0.00, 3.68
—-19 0.00,0.08 0.00,0.43 0.00,0.65 0.00,1.141.2 0.35,2.20 0.00,2.84 0.00,3.16 0.00, 3.78
—18 0.00,0.09 0.00,0.45 0.00,0.68 0.00,1.191.3 0.42,2.30 0.02,294 0.00,3.26 0.00, 3.88
—-1.7 0.00,0.10 0.00,0.48 0.00,0.72 0.00,1.241.4 0.49,2.40 0.12,3.04 0.00,3.36 0.00, 3.98
—-16 0.00,0.11 0.00,0.52 0.00,0.76 0.00,1.291.5 0.56, 250 0.22,3.14 0.00,3.46 0.00, 4.08
—-15 0.00,0.13 0.00,0.56 0.00,0.81 0.00,1.351.6 0.64,2.60 0.31,3.24 0.00,3.56 0.00, 4.18
—-14 0.00,0.15 0.00,0.60 0.00,0.86 0.00,1.411.7 0.72,2.70 0.38,3.34 0.06,3.66 0.00, 4.28
—-13 0.00,0.17 0.00,0.64 0.00,0.91 0.00,1.471.8 0.81,2.80 0.45,344 0.16,3.76 0.00, 4.38
—-12 0.00,0.20 0.00,0.70 0.00,0.97 0.00,1.541.9 0.90,2.90 051,354 0.26,3.86 0.00, 4.48
—-11 0.00,0.23 0.00,0.75 0.00,1.04 0.00,1.612.0 1.00,3.00 0.58,3.64 0.35 396 0.00, 4.58
—-1.0 0.00,0.27 0.00,0.81 0.00,1.10 0.00,1.682.1 1.10,3.10 0.65,3.74 0.45,4.06 0.00, 4.68
-09 0.00,0.32 0.00,0.88 0.00,1.17 0.00,1.762.2 1.20,3.20 0.72,3.84 0.53,4.16 0.00, 4.78
—-0.8 0.00,0.37 0.00,0.95 0.00,1.25 0.00,1.842.3 1.30,3.30 0.79,3.94 0.61,4.26 0.00, 4.88
—-0.7 0.00,043 0.00,1.02 0.00,1.33 0.00,1.932.4 1.40,3.40 0.87,4.04 0.69,4.36 0.07,4.98
—-0.6 0.00,049 0.00,1.10 0.00,1.41 0.00,2.0125 150,350 0.95,4.14 0.76,4.46 0.17,5.08
—-05 0.00,0.56 0.00,1.18 0.00,1.49 0.00,2.102.6 1.60,3.60 1.02,4.24 0.84,4.56 0.27,5.18
—-04 0.00,0.64 0.00,1.27 0.00,1.58 0.00,2.192.7 1.70,3.70 1.11,4.34 091,466 0.37,5.28
—-0.3 0.00,0.72 0.00,1.36 0.00,1.67 0.00,2.282.8 1.80,3.80 1.19,4.44 0.99,4.76 0.47,5.38
—-0.2 0.00,0.81 0.00,145 0.00,1.77 0.00,2.382.9 1.90,3.90 1.28,4.54 1.06,4.86 0.57,5.48
—-0.1 0.00,090 0.00,1.55 0.00,1.86 0.00,2.483.0 2.00,4.00 137,464 114,496 0.67,5.58

0.0 0.00,1.00 0.00,1.64 0.00,1.96 0.00,2.583.1 2.10,4.10 146,474 122,506 0.77,5.68

In contrast, our construction always provides a confidence As noted above, in Fig. 8 we follow the practice of the
interval at the desired confidence leveiith of course some PDGJ[2] by indicating with dashed lines those regions where
conservatism for the discrete problemsmdependently, one the goodness-of-fit criterion is less than 1%. In Tables 11-X,
can calculate the analogue of the goodness-of-fit, and decidB€ corresponding intervals are italicized. _
whether or not to consider the data or modetluding mean In summary, because our intervals decouple the confi-
expected backgroundo be invalid. This issue arises in the dence level used for a goodness-of-it test from the confi-

dence level used for confidence interval construction, one is

f;‘?’/ilvivsh[eonﬂaq upper limit is quoted; i.e., the confidence "Nfree to choose them independently, at whatever level desired.
M2

In the constrained Gaussian case, one might have data v APPLICATION TO NEUTRINO OSCILLATION

Xo=—2.0 and hence a 90% C.L. confidence intef\@al0.4] SEARCHES

from Table X. The natural analogue for the goodness-of-fit is _

the probability to obtain<x, under the best-fit assumption A. Experimental problem

of u=0. Experimental searches for neutrino oscillations provide an

In the Poisson-with-background case, one might have datexample of the application of this technique to a multidimen-
ne=1 forb=3 and hence a 90% C.L. confidence intef¥al  sional problem. Indeed it is just this problem that originally
1.88| from Table IV. The natural analogue for the goodnessfocused our attention on this investigation.
of-fit is the probability to obtairn<ng under the best-fit Experiments of this type search for a transformation of
assumption ofu=0. one species of neutrino into another. To be concrete, we
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FIG. 10. Plot of our 90% confidence intervals for the mean of a

. . . . ) FIG. 11. Calculation of the confidence region for an example of
Gaussian, constrained to be non-negative, described in the text.

the toy model in which s#{26)=0. The 90% confidence region is

. . . the area to the left of the curve.
assume that the experiment is to search for transformations

between muon type neutrinos, , and electron type neutri- sin’(2¢) is clearly bounded by zero and one. Values outside
nos,ve, and that the influence of other types of neutrinos carthis region can have no possible interpretation within the
be ignored. We hypothesize that the weak eigenstatgs  theoretical framework that defines the unknown physical pa-
and |v) are linear superpositions of two mass eigenstatesameters. Yet consider an experiment searching in a region
|v,) and|vs,), of Am? in which oscillations either do not exist or are well
) below the sensitivity of the experiment. Such an experiment
|[ve)=|vi)cos 0+ |vp)sin 6 (5D s typically searching for a small signal of excessinterac-
tions in a potentially large background ef, interactions
from conventional sources and misidentifieg interactions.
v,y =|v2)cos 6| vy)sin 6, (5.2) Thu;, it is equally I|kely _to have a be;t fitto a negatlye value
of sir?(26) as to a positive one, provided that the fit to Eq.

and that the mass eigenvalues foy) and|v,) arem; and (5.3 is unconstrained. _
m,, respectively. Quantum mechanics dictates that the prob- TYPically, the experimental measurement consists of

ability of such a transformation is given by the formula counting the number of events in an arbitrary number of bins
[2,16] [17] in the observed energy of the neutrino and possibly

other measured variables, such as the location of the interac-

1.27Am3L tion in the detector. Thus, the measured data consist of a set

( ) (5.3 N={n;}, together with an assumed known mean expected
backgroundB={b;} and a calculated expected oscillation

whereP is the probability for av, to transform into ave, L contributionT={ ;|sir?(26),An?}. _
is the distance in km between the creation of the neutrino 10 construct the confidence region, the experimenter must

from meson decay and its interaction in the detedfois the choose an ordering principle to decide which of the large
neutrino energy in GeV andm2=|m§—m§| in (eV/c?)2. number of possiblé& sets should be included in the accep-

The result of such an experiment is typically representecﬁance region for (_aach POi,”t on the%{iZﬂ)—An? plane. We
as a two-dimensional confidence region in the plane of th¢U99est an ordering principle identical to the one suggested

two unknown physical parameters, the rotation angle be- N Sec. [V, namely the ratio of the probabilities,

tween the weak and mass eigenstates, &and, the (posi- P(N|T)

tive) difference between the squares of the neutrino masses. R= ————, (5.4
Traditionally, sirf(26) is plotted along the horizontal axis P(N|Tpes)

2 . . .
and Am¢ is plotted along the vertical axis. An example of WhereTbes(Sinz(Zﬁ)besnAmﬁes) gives the highest probability

such a plot is shown.in Fig. 11, based on a toy model_ tha_t Weor P(N|T) for the physically allowed values of €26) and
develop below. In this example, no evidence for oscillations, >

is seen and the confidence region is set as the area to the le
of the curve in this figure.

and

P(v,—ve)= Sir?(26)sir?

m-.
tln the Gaussian regimey’=—2 In(P), and so this ap-
proach is equivalent to using the differenceyifibetweenT

_ o _ ) and Tpegy, i-€.,
B. Proposed technique for determining confidence regions

(nj—bj— uj)? (ni_bi_Mbesp)z

The problem of setting the confidence region for a neu- R'=A 2_2
trino oscillation search experiment often shares all of the . of o
difficulties discussed in the previous sections. The variable (5.5
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whereo; is the Gaussian error. We actually recommend artuations in higher energy bins do not lead to any physical

alternative form based on the likelihood functidi8], interpretation, and thus cancel in the calculatiomgf. In
these regionSA)(g tends to lower values than normal.

:Uvbesfl' b;

“rb I (5.6 C. Comparison to alternative classical methods
M D

Wi~ Mpespt NiIN

R'=Ax*=22
I Most papers reporting the results of neutrino oscillation
searches have not been explicit enough for us to determine
since it can be used in all cases. exactly how the confidence regions were set. However, we
To demonstrate how this works in practice, and how itcan imagine three classical methods that either have or could
compares to alternative approaches that have been used, Wave been used. We refer to these as the raster scan, the
consider a toy model of a typical neutrino oscillation experi-flip-flop raster scan, and the global scan. All of them have
ment. The toy model is defined by the following parametersthe advantage that a Gaussian approximation is made so that
Mesons are assumed to decay to neutrinos uniformly in & full Neyman construction of the confidence region is not
region 600—1000 m from the detector. The expected backhecessary.
ground from conventionab, interactions and misidentified (1) The raster scan: For each value/®fn®, a best fit is
v, interactions is assumed to be 100 events in each of B1ade for siA(26). At eachAm?, x* is calculated as a func-
energy bins which span the region from 10 to 60 GeV. Wetion of sirf(26), and the 1D confidence interval in §(26) at
assume that the’, flux is such that ifP(v,—v)=0.01 thatAm? is taken to be all points that havey@ within 2.71
averaged over any bin, then that bin would have an expecteef the minimum value(2.71 is the two-sided 90% C.L. for a
additional contribution of 100 events due #g— v, oscilla- x? distribution with one degree of freedonThe confidence
tions. region in the(sir?(26),An?) plane is then the union of all
The acceptance region for each point in the(@6)-An?  these intervals.
plane is calculated by performing a Monte Carlo simulation (2) The flip-flop raster scan: Similar to the raster scan
of the results of a large number of experiments for the giverexcept that a decision to use a one-sided upper limit or a
set of unknown physical parameters and the known neutrinvo-sided interval is made based on the data. If there is a
flux of the actual experiment. For each experimexy? is signal with significance greater than three standard devia-
calculated according to the prescription of either &g5) or  tions, the raster scan is used. If not, an upper limit is set by a
(5.6). The single number that is needed for each point in theaster scan using the one-sided 90% Q? value of 1.64.
sir?(26)-An? plane isA x2(sir’(26),An?), such thaix of the (3) The global scan: A best fit is made to both%2®)
simulated experiments havey?<Ax2. After the data are and Am?, and the confidence region is given as all points
analyzed, Ax? for the data and each point in the thathave g within 4.61 of the minimum valug/As men-
Sind(26)-An? plane, i.e.A x2(N|sir’(26),An?), is compared ~tioned above, 4.61 is the two-sided 90% C.L. fopadistri-

to Ax? and the acceptance region is all points such that ~ Pution with two degrees of freedom. _ o
In all three cases, we assume that there is no restriction

AXZ(N|sin2(20),Am2)< Axg(sinz(ze),Amz). (5.7 that the best fit be in the physical region. This is because the
method of using a fixed\ y? depends on the referengé
Figure 11 is an example of the result of a calculation for abeing the minimum of a parabolig? distribution. Any at-
random experiment in the toy model for which there were naempt to restrict the minimum to the physical region auto-
oscillations, i.e., for sif(26)=0. matically gives improper coverage. Thus, all three of these
One might naively expect that)(§=4.61, the 90% C.L. methods suffer from the possibility that they could either rule
value for ay? distribution with two degrees of freedom. For out the entire physical plane or give limits which are not
the toy model, it actually varies from about 2.4 to 6.6 acrosharacteristic of the sensitivity of the experiment.
the sirf(26)-An? plane. The deviation from 4.61 is caused by ~ We have used the toy model to study the coverage of each
at least three effects: of these techniques. The raster scan gives exact coverage.
(1) Proximity to the unphysical region. Points close to theHowever, it is not a powerful technique in that it cannot
unphysical region occasionally have best fits in the unphysidistinguish a likely value oA m? from an unlikely one, since
cal region. Since our algorithm restricts fits to the physicalit works at fixedAm?. This is best illustrated in the case in
region, these fits give a lowe y? than unrestricted fits. which a positive signal is found. Figure 12 shows the confi-
(2) Sinusoidal nature of the oscillation function. Tg¢  dence regions for both the raster scan and our proposed tech-
distribution assumes a Gaussian probability density functiomique for a sample case for whickm?=40 (eV/c?)? and
but the oscillation probability function is sinusoidal. For high sir?(26,)=0.006. Both techniques provide exact coverage,
values ofAm? fluctuations can cause a global minimum in a but the proposed technique isolates the signal, with one ghost
“wrong” trough of the function, increasing the value Afy? region, while the raster scan does not.
from what it would be if there were only one trough. Since the raster scan gives exact coverage, it will not
(3) One-dimensional regions. In some regions of thesurprise the reader to learn that the flip-flop raster scan un-
plane, the probability distribution function becomes onedercovers for the reasons given in Sec. Ill. Figure 13 shows
rather than two dimensional. For example, at very low valueshe region of significant undercovera@geater than 1%for
of Am? the only relevant quantity is the number of events inthe flip-flop raster scan. The coverage drops as low as 85%,
the lowest energy bin, since the oscillation probability, Eqg.as is to be expected from the discussion in Sec. lIl. To set the
(5.3), is proportional to 1?2 for sufficiently lowAm?. Fluc-  scale, a quantity we call the “sensitivity” is also shown in



57 UNIFIED APPROACH TO THE CLASSICA . .. 3887

103:|IIII T LR T T IIIIII| T T IIIII: 103:|IIII (] Y ‘g:
o This technique [77] 1 o :
B Raster scan T r X
10 2:_ True point - 10 2:_
o F 3 o F
o o - o o -
E r 1 E r 3 Undercoverage ]
NE B T NE r Overcoverage
10 = 10
| Sensitivity ----
1 IIIII 1 1 IIIIIII 1 1 IIIIIII 1 IIIII 1 1 IIIIIII 1 1 IIIIIII
3 2 -1 3 2 -1
10 10 ) 10 1 10 10 ) 10 1
sin“(29) sin“(29)

FIG. 12. Calculation of the confidence regions for an example of FIG. 14. Regions of significant under- and overcoverage for the
the toy model in whichAm?=40 (eV/c?)? and sirf(26)=0.006, as  global scan.
evaluated by the proposed technique and the raster scan.

VI. PROBLEM OF FEWER EVENTS THAN EXPECTED

this figure. The sensitivity is defined as the average upper BACKGROUND

limit one would get from an ensemble of experiments with \We started this investigation to solve the problem in clas-
the expected background and no true signal. We discuss thgical statistics in which an experiment which measures sig-
use of this quantity further in Sec. VI. nificantly fewer events than are expected from backgrounds
Unlike the raster scan and flip-flop raster scan, the globaill report a meaningless or unphysical result. While we
scan is a powerful technique. However, it suffers from nothave solved that problem, our solution still yields results that
giving proper coverage for the reasons enumerated at the eigie bothersome to some in that an experiment that measures
of the previous subsectigmumbers(2) and(3)]. It has both ~ fewer events than expected from backgrounds will report a
regions of undercoverage and overcoverage, as shown in Fifpwer upper limit than an identical experiment that measures
14. The coverage varies across the plane from about 76% & number of events equal to that expected from the back-
94%. ground. This seems particularly troublesome in the case in

Table XI summarizes the properties of the proposed techhich the experiment has no observed events. Why should
nique and the three alternative techniques that we have cof! €Xperiment claim credit for expected backgrounds, when
sidered. it is clear, in that particular experiment, there were none? Or
why should a well-designed experiment which has no back-
ground and observes no events be forced to report a higher
upper limit than a less well-designed experiment which ex-
pects backgrounds, but, by chance, observes none?

The origin of these concerns lies in the natural tendency
to want to interpret these results as the probabMify.,|x,)
of a hypothesis given data, rather than what they are really
related to, namely the probabili(x,|x) of obtaining data
given a hypothesis. It is the former that a scientist may want
to know in order to make a decision, but the latter which
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TABLE XI. Properties of the proposed technique for setting
confidence regions in neutrino oscillation search experiments and
three alternative classical techniques defined in the text.
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TABLE XII. Experimental sensitivity(defined as the average 10 3_“"| T
upper limit that would be obtained by an ensemble of experiments E N 3
with the expected background and no true sigred a function of C n
the expected background, for the case of a measurement of a Pois- r , 7
son variable. i ]
~ 10 2_— —
b 68.27% C.L. 90% C.L. 95% C.L. 99% C.L. "g E =
0.0 1.29 2.44 3.09 4.74 s [ ]
0.5 1.52 2.86 3.59 5.28 “'5 B T
1.0 1.82 3.28 4.05 5.79 10 = -
1.5 2.07 3.62 4.43 6.27 = 3
2.0 2.29 3.94 4.76 6.69 F 90%C. L. .
25 2.45 4.20 5.08 7.11 | Sensitivity ---- ]
3.0 2.62 4.42 5.36 7.49 Y T -
3.5 2.78 4.63 5.62 7.87 1 107 102 107 |
4.0 2.91 4.83 5.86 8.18 sin%(26)
5.0 3.18 5.18 6.32 8.76
6.0 3.43 5.53 6.75 9.35 FIG. 15. Comparison of the confidence region for an example of
7.0 3.63 5.90 7.14 9.82 the toy model in which sit{26)=0 and the sensitivity of the experi-
8.0 386 6.18 7.49 10.27 ment, as defined in the text.
9.0 4.03 6.49 7.81 10.69 L .
10.0 4.20 6.76 8.13 11.09 we suggesF that the sensitivity curve be displayed as well as
11.0 4.42 7.02 8.45 1146  the upper limit
12.0 4.56 7.28 8.72 11.83
13.0 471 751 9.01 12.22 VIl. CONCLUSION
14.0 4.87 7.75 9.27 12.56 The construction described in this paper strictly adheres to
15.0 5.03 7.99 9.54 12.90

the Neyman methofil], as applied to discrete distributions
since the 1930§13—15. Thus, the resulting confidence in-
tervals are firmly grounded in classical statistics theory.
classical confidence intervals relate to. As we discussed ikVhat is new is the particular choice of ordering we make
Sec. Il A, scientists may make Bayesian inferences ofvithin the freedom inherent in Neyman’'s method. This
P(u|xo) based on experimental results combined with theirchoice, described in Sec. 1V, yields intervals which automati-
personal, subjective prior probability distribution function. It cally change over from upper limits to two-sided intervals as
is thus incumbent on the experimenter to provide informathe “signal” becomes more statistically significant. This
tion that will assist in this assessment. eliminates undercoverage caused by basing this choice on
Our suggestion for doing this is that in cases in which thefhe data(“flip-flopping™ ). Our tables give classical confi-
measurement is less than the estimated background, the ¢4€nce intervals for the two common problems for which the
periment reports both the upper limit and the “sensitivity” PDG has described Bayesian solutions Incorpora’q(tgjas-
of the experiment, where the “sensitivity” is defined as thet|onable) uniform prior for a bounded variable: Poisson pro-

average upper limit that would be obtained by an ensemb|SESSes with background and Gaussian errors with a bounded

of experiments with the expected background and no trughysmal region. This introduction of Bayesian methods was

signal. Table XII qives these values. for the case of a meaz-it least partly motivated by problems with the traditional
gnal. 9 ) ' classical interval§non-physical or empty-set intervals, and
surement of a Poisson variable.

h ; h h coupling of goodness-of-fit C.L. with confidence interval
Thus, an experiment that measures 2 events and has @L.) which our new intervals solve. Thus, there should be

expected background of 3.5 events would report @ 90% C.Lienewed discussion of the appropriateness of Bayesian inter-
upper limit of 2.7 eventsfrom Table IV), but a sensitivity of 55 for reporting experimental measurements in an objective
4.6 eventdfrom Table XII). way.

Figure 15 represents a common occurrence for a neutrino The new ordering principle can be applied quite gener-
oscillation search experiment. It is a repeat of Fig. 11, amlly. We have developed the application to neutrino oscilla-
example of the toy model in which ${26)=0, but with the  tion searches, where the confidence region can have a par-
sensitivity shown by a dashed line. The behavior is typical ofticularly complicated structure due to physical constraints
what one would expect. Because of random fluctuations, thand multiple local minima in the pdf's.
upper limit is greater than the sensitivity for some values of Finally, we certainly agree that no matter how one con-
Am? and less than others. In this case, it is due to fluctuastructs an interval, it is important to publish relevant ingre-
tions, but in an actual experiment, it could also be due to thelients to the calculation so that the reatird the PDGcan
presence of a signal around or below the experiment’s seriat least approximatelyperform alternative calculations or
sitivity at some valué\m?, making other values aim? less  combine the result with other experimeni$9]. In the
likely. Again, for cases in which a significant portion of the Gaussian case, the ingredients are the measured (&laa
upper limit curve is below the sensitivity of the experiment, if non-physical and the standard errofSeparating the sta-
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tistical and systematic errors, as is often done, is even betesults, such an ordering is naturally implied by the theory of

ter) In the case of a counting experiment with known likelihood ratio tests, as explained in Sec. 23.1 of Ref).

background, the required ingredients are the number of obVe thank H. Chernoff for clarifying discussions on this

served events, the expected mean background, and the facR@int.

(incorporating, e.g., integrated luminosity, efficiencies,)etc.

which converts the number of observed events to the relevant ACKNOWLEDGMENTS

physics guantity(cross section, branching ratio, etc. We thank Frederick James, Frederick Weber, and Sanjib
Note added in proofAlthough we are not aware of pre- Mishra for useful discussions and comments on the manu-

vious application of this ordering principle to the construc-script. This work was supported by the U.S. Department of

tion of confidence intervals for the presentation of scientificEnergy.
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