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Ba sic Statistics for Experimenta l Phy sics 

It is import ant for both experimental and theoretical physicists 
to have a good understanding of probability and statistics in order to 
evaluate experimental results. A number of techniques exist for making 
such evaluations although a relatively small number of simple techniques 
usually suffice. Although knowledge of probability and statistics theory 
is important, one should never use these as a crutch. It is much more 
important to skillfully design and carry out an experiment than it is to 
exhaustively statistically analyze the results of a poor experiment . It 
soon becomes apparent to anyone with even a small amount of experience in 
analyzing data that statistical analysis merely quantifies what one's 
intuitive impressions are. There is a certain amount of calibration of 
intuition that goes on when one simultaneously observes data and imposes 
statistical tests on the data and this is p e rhaps one of the more important 
uses of probability and statistics to the beginning physicist. There will 
be many occa sions when decisions will, of necessity, be based on impres
sions of likelyhood. Often there is simply not the time to perform 
detail~d statistical calculations. 

Certain notions of probability theory are implicit for application of 
statistical techniques. The following sequence of mathematically oriented 
assertions sets the stage for our brief study of statistics. I direct the 
attention of anyone wishing a more detailed exposition to the excellent 
introductory text by Larson (Introduction to Probability Theory and 
Statistical Inference, Wiley, 1969) from which much of the following is 
taken. 

Definition: An experiment is any operation whose outcome cannot be pre
dicted. 

Definition: The sample space S of an experiment is the set of all possible 
outcomes for the experiment. 

Definition: An event is a subset of the sample space. Every subset is an 
event. 

Definition: An event occurs if anyone of its elements is the outcome of 
the experiment. 

Definition: A probability function is a real valued set function defined 
on the class of all subsets of the sample space S; the value 
that is associated with a subset A is denoted by peA). 

Probability theory is based on the following three ?xioms: 
1. peS) = 1 
2. peA) ~ 0 for all 
3. P(Al UA2UA 3···) = 

subsets A of S 
peAl) + P(A2 ) + P(A3) + ... if A.nA. = ¢ 

1 J 

for i :j: j 

In the above we have used standard set theory notation fo~ unions, inter
sections and the null set. Below we will use the symbol A to denote the 
complement of the subsetA. The following theorems, which are easily 
proved from the axioms, are stated without proof. 

Theorem: P(¢) 0 

Theorem: peA) 1 peA) 
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The ore m: p (An B) PCB) 

The ore m: P(AUB) peA) + PCB) - p(AnB) 

Two more de f initions, related to the intuitively obvious technique for 
calculating the probability of the simultaneous occurrence of two 
independent events, are: 

Definition: Two events, A and B, are independent if and only if 
p(An B) = P(A)P(B) . 

Definition: The conditional probability of B occurring given that A has 
occurred (written p(BIA» is p(BIA) = P(BnA)/P(A) if 
peA) > O. If peA) = 0, we define p(BIA) = O. 

The above definitions and theorems embody much of that which is usually 
taken as intuitive notions of probability. To extend their utilization 
to statistics, one requires the concept of random variables and distri
bution functions. 

Definition: A random variable X is a real-valued function of the 
elements of a sample space S. 

Definition: A random variable X is discrete if its range forms a discrete 
(cou~ble) set of real numbers. A random variable X is 
continuous if its range forms a continuous (uncountable) 
set of real numbers and the probability of X equalling any 
single value is O. 

Definition: The probability function for X is a function, PX(x), of a 
real variable x and is defined to be p (x) = P(X(w)=x) . 
where w denotes a generic element of tfte sample space . 

Definition: The distribution function for a random variable X (denoted 
FX(x» is a function of a real variable x such that: (1) the 
domain of definition of FX is the whole real line, and (2) for 
any real x, FX(x) = P(X~x). 

Definition: The probability density function for a continuous random 
variable Y (denoted f (y» is a function of a real variable 
y such that (1) the d5main of fy is the whole real line and 
(2) for any real numer t 

Fy(t) = l:oofy(Y) dy 

Definition: (1) If X is a discrete random variable with probability function 
PX(x), the expected value of H(X) is defined to be: 

~H(X)] = LH(x)PX(x) 
(2) If X is a continuous random variable with probability 
density function fX(x) , the expected value of H(X) is defined 
to be 
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Definition: The average value of a random variable X is de f ined to be 
~X = E[ X] • 

Definition: The varience of a random variable X is defined to be: 
0 2 = E[ (X_~X)2]. The square root of the varience is the 
standard deviation of X. 

There are only several probability distributions that are of interest 
to us. These are the binomial, PoissQn, exponential and normal (or 
Gaussian) distributions. 

Binomial Random Variable 
We first define a Bernoulli trial as an experiment which has two 

possible outcomes : success and failure. The probability for success is 
denoted by p and the probability for failure by q=l-p. If X denotes the 
number of successes in n repeated independent Bernoulli trials, then X 
is called the Binomial random variable with parameters ri and p. It is 
straightforward to calculate the Binomial probability function. There 
are n!/[ (n-x)!x!] ways of ordering x successes in a sequence of n trials. 
Each of these orderings has a probability pxqn-x of occurring. Thus: 

PX(x) = (~)pxqn-x where 

(~) = n!/[ (n-x)!x!] is the Binomial coefficient. 

It is easy to show that for the Binomial distribution ~X np and oi = npq. 

Poisson Random Variable 
= /),.. cy.-

The Poisson random variable is a limiting case of the binomial random 
variable . This is so because ~sa a Poisson process with parameter A 
is defined as a sequence of intervals for which the occurrence of events 
are possible. For a Poisson process the intervals can be made short enough 
so that the probability of two or more events occurring per interval is 
negligible. The intervals are usually in units of space or time and the 
Poisson parameter A is the probability per unit interval for the occurrence 
of an event . For an interval of length s, and for a Poisson process with 
parame ter A, the Poisson random variable X is the number of successes k 
within this interval. We shall now show that 

PX(k) = (As)ke-AS . 
k! 

As mentioned before , the Poisson process is a limiting case of the Binomial 
distribution. Each Bernoulli trial is an interval of length sin and there 
are n such trials, where n is large enough so that the probability of two 
events per trial is negligible. Thus 

PX(k) (~(As/n)k(l-As/n)n-k = n(n-I) (n-2)··· (n-k+l) Gs/n )k(l-As/n)n 
k! l-As/n 

n
k 

(As)k (1-1/n)(1-2/n)···(1-(k-l)/n) (l - As/n)n/(l-As/n)k 
k! k 

n 
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In the limit as n ~ 00 

which is the desired result. 
k! 

The mean and varience for the Poisson random variable can be shown to be 
~X = AS and o~ = AS. 

Exponential Random Variable 
This is our first example of a random variable with a continuous 

probability density. The exponential random variable T with parameter A 
is defined to be the interval between an arbitrary starting point and the 
point of occurrence for the first event for a Poisson process with parameter 
A. To derive the probahility density function. fT(s). we note that the 
probability of no successes from s = 0 to s is exp(-As) (this is the case fo r 
k=O for the Poisson distribution). The probability of an event within ds 
is Ads so that 

It can be shown that ~T = llA and o~ 

Normal Random Variable 
This is undoubtedly the most important random variable to the scientist. 

This is due to the fact that the majority of experimental distributions are 
at least approximately determined by normal variations. There is a theoreti
cal explanation for this fact which is embodied in the central limit theorem. 
We will come back to this theorem afte r we have first discussed the proper
ties of the normal. or as it is also called. the Gaussian probability density 
function. A random variable is said to be normally distributed if and only 
if its probability density function is: 

1 
fX(x) = 

0/Z;-
The parameter ~ can be any r eal number while 0 must be positive. As the 
symbols suggest. the mean and varience of the normal distribution are 
~ = ~ and 0 2 = 0 2 • 

X We now aefine the moment generating function which is quite useful in 
obtaining information relating to probability distributions. 

Definition: The moment-generating function. rov(t). for a random variable X 
is defined to be ~(t) = E[ exp(tXj] . 

The name moment-generating function comes from the easily proved fact that 

~ (k)(O) _ d
k ~(t) 't=O = ~ 

dt
k 

where ~ is the kth moment of the distribution. i.e. ~ = E[X
k
]. It is 

intuitively obvious that a probability density function is determined by 
its moments. The first moment determines an average value. the second moment 
is related to the peak width. the third to the assymmetry etc. This fact can 
be proven rigorously if we assume that only positivt values of a random 
variable are allowed. In this case ~(t)=my(t)=f~e xfx(x)dx =f~e Yfy(x)dx 
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or £ (-t) = £ y(-t) where £ denotes the Laplace transform. Since Laplace 
transforms are 1nvertable this means that fX(x) = fy(x). The proof of the 
general c ase can be found in advanced texts on probability. We state the 
theorem below . 

Theorem: Assume that X and Yare random -variables 
functions my(t) and ~(t) respectively. 
only if fx(f) = fy(t) for all t. 

with moment generating 
Then ~(t) = ~(t) if and 

We will now introduce the concept of jointly distributed random variables: 

Definition: Given an experiment, the pair (X,Y) is called a two dimensional 
random variable if each of X and Y associates a real number 
with every element of S. 

This definition is easily extended to n dimensional random variables, which 
a re n-tuples (X

1
,X

2
,··· X) . The random variables X

1
, X2 , · ·· X

n 
are said to 

be independent 1f n 
n 

pX(~ = IT PX (x.) where 
i=l i 1 

the underlines denote n-tuples. We now state and prove the following use
ful theorem: 

Theorem: If X1 ,X2 ,· ··X are independent, identically distributed random 
variables and

n 
n 

Proof: ~(t) 

Y = I x. then ~(t) =[~(t)]n. 
i=l 1 

E[ e tY] = E[ e tX 1 +tX2 + ... tXn] = E[ e tX1] E[ e tX2] ••• E[ ~ tXn] 

[~(t)] n 

A very useful theorem makes use of this result. 

Theorem: Let X
1

,X2 ,···X
n 

be independent, identically distributed normal 
random variables with parameters ~ and a . The Y = X1+X

2
+· ··X 

is a normal random variable with parameters n~ and na2 n 

Proof: 
1 foo tx _(x-~) 2/2a2 

We first evaluate ~(t) = ---- e e dx. 
aili _00 

Using the relation 2 b2 '~at f:coe -ax +b~x= ITT/a e ,{4 'T we find 

~(t) 

n~t + na2t 2 /2 
~(t) e 
generating functions Y 
varience na2 . 

From the previous theorem, 

Thus, from the uniqueness property of 
is normally distributed with mean n~ and 

The usefullness of the above result will be apparent when we consider 
sampling theory and statistics. 
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We quote below a theorem which is independent of the dis tribution . 
Proof will be left as an exercise . 

Theorem: 

y 

n 
a2 = L a~a~ 

y i=l 1 1 

be independent random variables with mea ns 
variances 0 2 0 2 ... 0 2 respective ly. If 

l' 2' • n 
n 

(a. 's are constants) then ~y = I a.~. and 
1 i=l 1 1 

_ 1 n 
It follows f r om this theorem tha t X = - L X. has mean ~X = ~ (if ~ ~ 

n. 1 1 X. 
1= 1 

for all i) and variance a_2 = a2 /n. The variance of the distribution of X. 
a mean is smaller than the variance o f the single distribution by a factor 
l/n. This fact is of conside r able import ance for statistical inference . 

We now state a nd give a heuristic proof of the Central Limit Theorem: 

Theorem: 

Proof: 

Suppose X1,X2,X1 · ~ · is a sequence of indepedent, identically 
distributed ranaom variables,each with mean ~ and variance a2 • 

Define the sequence Zl,Z2,Z3'··· by Zn=(Xn~~ )/(a/~) n=1,2.3,··· 
n 

where X = I X./n. The n for 
n i=l 1 

all real t. lim F
Z 

(t) = NZ(t) 
n-+= n 

where Nz(t) is the standard normal distribution function (i.e. 
the r anaom variable Z has a mean value of 0 and a variance of 1). 

We have seen above that E[X]= ~ and E[ (X _~ ) 2] = a2 /n. Thus 
E[Z] = 0 and E[Z 2] = 1. nThe moment gen~rating function for Z 
is:n n n 

mz (t) 
n 

E[etZn] = E[et(Xn-~)/(a/~)] 

~ E[ e t (Xi -~) I ( a ~)] 
i=l 

mZ (t) = [ m(X_~)/a(t/~)]n 
n 

In mz (t) = n In[m(X_~)/a(t/~)] 
n 

E[ ~ et(Xi-~)/(a~)] 
i=l 

The moment generating function can be written as a power series with 
moments as coefficients. Since (X-~)7a = 0 and a2(X_~)/0 = 1 we have 

and m(X_~)/o(t/lD) 

= 1 + aCt) 

1 + t 2 /2n + m3(t/~)3 
3! 

4 + m
4 
(tim) + ... 

4! 
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In m
Z 

(t) 
n 

n In(1+a(t)) = n (a(t)-a2 (t)/2+a 3 (t)/3-··.) 

for lal < 1 
As n + 00, na + t 2 /2, na

k 
+ 0 if k=2,3,4,··· 

So lim In m
Z 

(t) = t 2 /2 or lim m
Z 

(t) = e
t2

/ 2 

n~ n n~ n 
But this is just the moment generating function for a normal random 
variable with mean 0 and variance 1. This completes the proof. 

Thus, the arithmetic average of a large number of independent, 
identically distributed random variables is distributed according to 
the normal distribution in the limit of large sample size, regardless of 
the nature of the individual random variable distribution. This explains 
the fact that the normal distribution is a good approximation for a 
large number of probability laws. It is impossible to determine in general 
how large n must be for a given probability law to be approximated by a 
normal distribution to a given degree of accuracy. An important example 
of this will be seen later for the various energy straggling distributions. 
Two familiar distributions which are readily approximated by the normal 
distribution are the binomial and Poisson distributions. As a rule of 
thumb, the normal approximation to the binomial distribution is good if 
the number of trials n ~ 30 and np ~ 5 (since the Poisson distribution 
is in fact a limiting case of the binomial distribution as n + 00, we see 
that a Gaussian distribution approximates a Poisson distribution if AS ~ 5). 

Statistical Inference 

Up to this point we have assumed well defined sample spaces, experi
ments and probability laws . Prediction of expected values followed in a 
straightforward manner. Each probability law had well defined parameters 
which characterized the law. 

The experimentalist operates in a shadier world. He is doing 
experiments to unravel the parameters of an unknown probability law. There 
are often competing theories to be decided amongst on the basis of 
experimental results, and each of these theories has a different probability 
law. The subject of determining the best probability law and the best 
estimates of the parameters which characterize that law is known as 
statistical inference . The notion of sampling is central to this subject. 
A sequence of experiments on the random variable X is known as a random 
sample. A random sample of size n is an n-tuple of random variables 
X1,XZ" ·· X. Any function of the elements of a random sample is called a 
sfatlstic.

n 
Thus LX./n is a statistic and is refRrred to as the sample mean. 

The kIth sample mom~nt is defined to be ~= (LX. )/n. Note that means and 
moments take on different meanings than in prob~bility theory. In sampling 
theory, moments are statistics and as such are random variables . On~ can 
repeat a sample many times, each time obtaining a different value for a 
sample moment. A straightforward but important theorem regarding sample 
moments follows: 

Theorem: Let X X "'X be a random sample of X. Then E[~]9a where K 
1'~' n k =~ is the k th moment of the sample and ~ is the kIt moment of X. 
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Proof: 
1 n k 1 

E[~J= E [- I x. ] = -I ~ = ~ where we have us ed the fac t 
n i =l 1 n 

that the elements of a random sample are identically distribut e d. 

Thus, if we let X = M , then E[~ =~. An important corollary follows 
the definition of the sample variance. 

Definition: If X1 ,X2 ,···,X are a random sample of X, the sample variance 
is defined to Re 

n 
_1_ I (x._X)2 
n-1 i =1 1 

where X is the sample mean. 

This is probably familiar to most of you as an estimate of the 
variance of the parent distribution. The justification for this follows 
from the fact that E[s 2] a 2 as can be seen b e low: 

But, 

E[ s 2] = 1 
n-1 

E[XLJ 

E [I(X.-X)2] = ~1 E[ nM
2
-nx2J = ~ m - E[ x2]] 

1 n- n-1 2 

The most important distribution fun c tion in the study of statistics 
and in the analysis of experimental data is that of the chi-squared (X2) 
random variable. It is defined in the following way: 

Definition: 

Theorem: 

Proof: 

If X
l

,X
2
,···X is a random sample of a normal random variable 

X wifh mean ~nand variance a2 , then 
n (X._~)2 
\' 1 

Y = L. a2 
i=l 

is a X2 random variable with n degrees of freedom . 

The probability density function for the X2 random variable 
with n degrees of freedom is 

----:--=-1 ;--:-:- 1 ( n / 2 ) - 1 - y / 2 -=- --y e ,y >O 
r(n/2) 2n/2 

o otherwise. 

illy(t) 
n ( ) 2 / 2 n 

E[e
tY

] = II E[e
t Xi-~ a] = [m(X_~)2/a2(t)] 

i=l 

[m 2 (t)]n X2 = (X_~)2/a2 
Xl 1 

, 1 foo t(x-~)2/a2 _(x-~) 2 /2a2 = -- e e dx 
ilia -co 

1 foo -(x-~) 2 (l-2t) /2a 2 
= -- e dx· if y 

ilia _ex> ' 
x-~, 
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m 2 (t) 
X 

1 

_1_ foo e _y 2 (l-2t) /2 O'
2

dx and if x 2 = y 2 (l-2t) / 0'2 
&0' _ 00 

m 2 (t) 
X 

1 a foo e -x
2

/2dx = (l-2t)-~ 
/2;0' (1-2t) ~ _00 1 

IIl.r ( t) (l-2t) -n/2 

foo 1 1 n/2-1 -y/2 ty 
I - a r (n/2) 2n/2 y e e dy 

1 f oo n/2-1 y(t~~) 
/ 

y e dy 
r(n/2)2n 2 a 

Let x 

I 
1 foo

x n / 2 - 1 1 -x 
(+dx) 

r(n/2)2n / 2 ( -t! )n/2-1 
e 

a -t '2 ( -t~--2) 

I 
1 1 

r(n/2) = 1 

r(n/2)2n / 2 n/2 (l-2t) n/2 ( -t~--2) 

This completes the proof. 
It can b e shown that At 2 = nand 0'2 2 = 2n. 

X X 
Theorem: If Y and Z are independent X2 random variables with m and n degrees 

of fre e dom respectively, then Y + Z is a X2 random variable with 
m+n degrees of freedom. 

Proof: 
tY tZ -m/2 -n/2 

E[ e e ] = ~(t)mz(t) = (l-2t) (l-2t) 

(l-2t) -(m+n) /2 

E(X._~)2 
1 E(X i -X)2 + (X_~ )2 

0' 2 O' 2 /n It is easy to show that 

The term on the left is a X2 random variable with n degrees of freedom and 
the second term on the right is a X2 random variable with 1 degree of freedom. 
From the above theorem, it is plausible, and in fact can be proved that: 

E(X._X)2 
____ 1~._-- is a X2 random variable with n-1 degrees of freedom. 

O' L 

The meaning of the term degrees of freedom becomes_clear: one degree 
of freedom has been lost in determining the mean value X. Effectively, 
there are only n-1 independent elements in the sample. One has been used 
up to determine X. 

If we are sampling a single random variable, the X2 distribution can 
be used to evaluate a confidence level for an estimate of a if the random 
variable is known to be Gaussian. Most probability texts and compilations 
of mathematical functions have tables of the chi-squared distribution which 
can be used for this purpose. A simple extent ion of the chi-squared concept 
also allows one to determine the goodness of fit of a hypothesized function 
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y(x) to a collection of dat a Yi(x), where x is assumed to be known. As 
an example, x may be a channel on a pulse heigh t analyzer and y. may b e 

- 1 
the number of observed counts in the ilth channel, while y(x) would be 
the expected number of counts based on some theory. It can then be shown 
that the statistic: 

n [y.-y(x.)] 2 

X
2 _ \' 1 1 

- L 2 
. 1 CJ • 1= 1 

(where i runs over the number of values of x. and where CJ. is the known 
standard deviation for the normally distributed random va~iable y(x.» is 
a chi-squared random variable with v de grees of freedom where v=n-m~ m 
bein4 the number of parameters used to estimate the function y(x ). The 
metbdd of maximum likelyhood is used to evaluate the m f unctional 
parameters. In this method, p a rameters are selected which maximize the 
theoretical probability of observing the actual outcome of an experiment. 
For the case of normally distributed random variables at each x., it can 
be shown that the me thod of maximum likelyhood is equivalent to

1
the least 

squares method_whereby the statistic X2 is minimized by adjusting the 
parameters of y(x.). Goodness of fit is then ch~cked by looking up the 
minimized value of chi-squared in a mathematical table. If the chi-squared 
table yields the result that the probability for observing the actual 
result is less than 0.1%, one says the disc~epancy is very highly 
significant, if less than 1% it is highly significant and if less than 5% 
it is significant. Inapproprriate usage of these words could cause mis
understanding so it would serve you well to memorize them. Discrepancy, 
in the present context, is taken to imply that the assumed form of the 
function y(x) is not correct. It is important to realize that a chi-squared 
test never can be used to prove that a given function is the correct one, it 
can only be used to reject hypothetica l functions. 

Having lapsed momentarily into a somewhat sloppy discussion of chi
squared in the hopes of striking a familiar note we will now try to regain 
our composure with the following definition: 

Definition: Supose that X is a random variable whose probability law depends 
on an unknown parameter 8. Given a random sample of X

1
,X

2
,···,X , 

the two statistics L~ and L2 form a 100(I-a) % confidence 1nterva~ 
for 8 if P(Ll~8<l2) ~ I-a. 

The concept of a confidence interval is quite important to an experi
mentalist since this is as close as he or she can generally come to the 
truth. Measurements are always of the nature of random samples and the 
unknowns are the parameters of probability distributions. Thus an experi
mentalist cannot hope to determine 8 but it is within his or her grasp to 
determine the statistics Ll and L2 which bracket 8. The goal of the 
experimentalist is to determine L1 and L2 which are very nearly equal to 
each other for values of a close fo zero. As an example, suppose we take 
a random sample of a normal random variable with unknown ~ but of known 
variance CJ 2 . We know that X is a normal random variable with mean ~ and 
varience CJ2/n so that it is clear that (X-CJ/~, X+o//:O) forms a 68.3% 
confidence interval for~. What if we do not know what CJ is however? 
There is something called the t-distribution, which is quite close to the 
normal distribution and, which enables us to form confidence intervals in 
this case. This follows from the theorem below which we will state without 
proof: 
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Theorem: Let X
1

,X
2
,"'X be a r andom sample o! a normal r andom v a riable 

with mean ~ an~ variance 0 2 . Then ( X-~)/( s/1rD has the 
t-distribution with n-l degrees o f freedom where s is the sample 
variance and the t-distribution density function with m degrees 
of freedom is: 

f (t) = r((m+l)/2) (l+t 2 /m)-(m+l)/2 

T r(m/2)/ffi; 

By consulting a table of t - distributions we can find the 68.3% confidence 
intervals for ~ and we see they have the form: 

- ~ - ~ (X-ks/n , X+ks/n) where k is given below for various n: 

n k --
2 2.26 
5 1.22 

10 1.12 
20 1.08 

We see that as n gets larger the disti~ction between the t-distribution and 
the Gaussian gets smaller (A Gaussian distribution would have k=I). 

We remind you that you already know how to form confidence intervals 
for an unknown varience 0 2 of a normal random v~riable by taking a random 
sample X

1
,X

2
,"'X

n 
and forming the sample mean X. This is so since 

L(X ._X)2/02 is a chi-squared random variable with n - l degrees of freedom . 
Thu~, if X~/2 denotes the point for which p( X2<X~/2) = a/2 and P(x 2<xf_a/2) 
l-a/2 then 

_\ -22 _\ -22 
Ll - L(Xi- X) /X 1- a / 2 and L2 - L(Xi-X) /Xa/2 form 

a 100(I-a)% confidence interval. 
Two other distributions e x ist which are useful in statistical inference 

and we will close our discussion by briefly touching on these . One of these 
is the F distribution. If two statistics X~ and X~ are determined which 
follow the chi- squared distribution , the ratio 

(xi/vl)/(x~/v2) (vI and v2 are the number of degrees of 

freedom for Xi and X2 respectively) is distributed according to the F dis
tribution (F stands ror R.A. Fisher, one of the most influential workers in 
the field of statistics). Like the normal, t- and X2 distributions, tables 
of the F distribution can be found in most probability and statistics texts. 
The most common application of the F-test is in determining if a fit of data 
to a multi-parameter function is significantly improved by adding another 
parameter. To simplify tabulations it is convenient to use the statistic 

F _ x2 (m-l) - x2(m) 
- X2 (m) / (N-m-l) 

where m is the number of parameters used . The additivity feature of X2 
random variables implies that the numerator is a chi-squared random variable 
with 1 degree of freedom . Thus instead of tabulating F distributions for 
a plane (v

1
,v

2
) we merely need to tabulate for various values of v2 . If 

the added parameter is useful, the observed value of F will correspond to 
a small probability for such an observation, as computed from tabulated 
values of the F distribution . This is so because the statistic F does not 
actually correspond to an F random variable unless the data is fit by the 
Frbf~" C U flvt. 
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This is o f course the same reasoning that applies to the chi-squared test. 
The sta tistic L(X-X) 2 / cr 2 is only a X2 random variable if X is the sample 
mean. For exactly the same reason, L(y. -y(x.)f/cr~ is a X2 random variable 
only if y(x.) is the maximum likelyhoodlesti~te ~f the actual, albeit 
unknown, av~rage value of the random variable y(x.). 

The chi-squared and F tests for goodness of tits are known as 
"distribution dependent tests." In order to use chi-squared one needs to 
know the variances at each x. and one needs to know that the distributions 
y(x.) are normal. The F test is something of an improvement in that the 
variances cancel out although it still only works for Gaussian distributions 
and it only allows one to decide if one fit is better than another and not 
if either one is consistent with the correct function (if one does not know 
the variance at x. it is impossible to asses goodness of fit since it is 
conceivable withi~ the realm of statistics that a set of scattered data 
points actually reflect a "scattered" parent function). There exist a number 
of tests which are referred to as distribution free tests. These can be 
applied to a data set for which we have complete ignorance regarding the 
nature of the parent distribution. In general, they are all based on 
arranging observations and ranking them in some way. One such test is the 
run test. Let X

1
' X

2
' ···.X

m 
be an ordered sample and let Y±'Y2 '···Yn be a 

second ordered sample (by ordered we mean Xl<X2~·· ·<X) . f we let 
ZJ,Z2,···,Zm+n denote the ordered samp~~ consistingmof the XIS and Y's 
tIien we deflne a "run" as a sequence of one or more XIS or one or more Y's . 
Let R denote the number of runs. For ~11 and n~ll it can be shown that 

1. 
a = 2mn(2mn-m-n) 

R (m+n) 2 (m+n+l) 
~ = 2mn + 1 

R m+n 
and 

and that if I~R-RI/aR ~ 1.645,1.96,2.33 or 2:58 we can reject the hypothesis 
that the samples come from the same population at the 5, 2.5, 1.0 or 0.5% 
level respectively. One possible use for this test is to determine whether 
or not a distribution is actually random. Consider the data below and the 
best fit straight line. 

X,Y 

Let x ,x •...• ~ denote the abscissas of those points which lie below the 
line Ind 21et y ,y •..•• y denote the abscissas of the points above the line. 
If the parent Jistributign is truly random. the ordered sample of XIS and 
y's will pass the run test. Note that we do not require <n> = <m>. i.e. it 
is not necessary for the parent distribution to even be symmetrically dis
tributed about the line. let alone Gaussian. This is a very powerful way 
to test the hypothesis that a line (it does not have to be a linear fit) 
is an acceptable fit of randomly distributed. data. If the test fails we 
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can reject either the fit or the assumption of randomness. 
In closing we again caution you against using statistics as a crutch. 

It is very rare for the probability distributions encountered in the real 
world to be as clean and well defined as those found in mathematical theorems. 
Even if one is fairly confident that an experimental distribution is 
Gaussian, it is nearly impossible to eliminate the possibility that a few 
scattered points far from the peak are not part of a tail to the distribu
tion. Tails are just one problem to contend with. Among the many other 
problems is the fact that in a very large fraction of instances one knows 
for sure that he is dealing with a situation in which the requirements for 
the standard tests fo r hypothesis are not me t. For example,suppose one is 
testing the hypothesis that a histogram is fit b y a Gaussian function. 
Suppose the i'th bin of the histog ram has N. counts. Let E. be the expected 
number of counts in this bin based on the a~sumed Gaussian function: 

E = K exp [-(i-i )2/(20 2 )] 
i P 

where i is the average bin (note that while 1 1S an 
need toPbe an integer). Estimates of the p a rameters 
via the rela tions: 

i LiN. / EN. 
P 1 1 

0 2 E(i-i )1Yt~N.-l) 
p ~ 1 

To determine K we must minimize the statistic 
(N. -E.) 2 

X2 = I \ 1 

°i 

integer, i does not 
i and a c~n be obtained 

p 

But what do we use for o~? Since the process of havin~ points fall into a 
given bin in a histogram

1
is binomial, the v a riance, a., of the number of 

counts in the bin is pqIN. where p is the p~obability that a bin is added 
to for any given event ana q=l-p. If there are many populated bins or if 
a given bin population is very small compared to tha t of other bins then q 
is nearly equal to 1 and the varience is simply -p I N. or E.. This is the 
variance one expects from a Poisson distribution whiEh follows from the fact 
that a Poisson distribution is a good app roximation to a binomial distribu
tion for a small value of p. Thus we can write: 

(N.-E.)2 
1 1 

E. 
1 

This statistic is minimized to determine K. Can we then use the minimized 
X2 to determine goodness of fit? Strictly speaking the answer is no. Since 
the data is distributed according to Poisson statistics, the use of the 
chi-squared test, which requires normal variations, is not valid. However 
it should be recalled that for Ei ~ 5, a normal approximation to the Poisson 
distribution is justified. Thus if bins of unequal width are arranged so 
that E. ~ 5, we can, in an approximate sort of way, use the X2 distribution 
with Ek.-3 degrees of freedom for a test of goodness of fit. In a similar 
crude m~nner, one often simply uses N. as an estimate of o~ rather than the 
actual expected number of counts in bin i. What then has 5appened to math
ematical precision? It has simply evolved. The fact of the matter is that 
the theory of statistics would be useless unless some consideration is given 
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to the fact that the rigorous mathematical requirements are a lmost 
never satisfied in the real world. To cover themselves , ma thematicians 
have come up with a word which precisely defines how one copes with 
imprecision. The word is robustness. A procedure is robust if it still 
works fairly well even if the assumptions are not quite satisfied. Of 
course, physicists have long known about robustness. Experiments are 
never perfect, but good ones work fairly well. 
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