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Basic Statistics for Experimental Physics

It is important for both experimental and theoretical physicists
to have a good understanding of probability and statistics in order to
evaluate experimental results. A number of techniques exist for making
such evaluations although a relatively small number of simple techniques
usually suffice. Although knowledge of probability and statistics theory
is important, one should never use these as a crutch. It is much more
important to skillfully design and carry out an experiment than it is to
exhaustively statistically analyze the results of a poor experiment. It
soon becomes apparent to anyone with even a small amount of experience in
analyzing data that statistical analysis merely quantifies what one's
intuitive impressions are. There is a certain amount of calibration of
intuition that goes on when one simultaneously observes data and imposes
statistical tests on the data and this is perhaps one of the more important
uses of probability and statistics to the beginning physicist. There will
be many occasions when decisions will, of necessity, be based on impres-
sions of likelyhood. Often there is simply not the time to perform
detailed statistical calculations.

Certain notions of probability theory are implicit for application of
statistical techniques. The following sequence of mathematically oriented
assertions sets the stage for our brief study of statistics. I direct the
attention of anyone wishing a more detailed exposition to the excellent
introductory text by Larson (Introduction to Probability Theory and
Statistical Inference, Wiley, 1969) from which much of the following is

taken.

Definition: An experiment is any operation whose outcome cannot be pre-
dicted.

Definition: The sample space S of an experiment is the set of all possible
outcomes for the experiment.

Definition: An event is a subset of the sample space. Every subset is an
event.

Definition: An event occurs if any one of its elements is the outcome of
the experiment.

Definition: A probability function 1is a real valued set function defined
on the class of all subsets of the sample space S; the value
that is associated with a subset A is denoted by P(A).

Probability theory is based on the following three axioms:
1. P(S) =1
2. P(A) > 0 for all subsets A of S
3. P(AIUAZUA3"’) = P(Al) + P(Az) + P(A3) 4+ °+* if AlﬂAj = ¢

for i ¥ j

In the above we have used standard set theory notation for unions, inter-
sections and the null set. Below we will use the symbol A to denote the
complement of the subsefA. The following theorems, which are easily
proved from the axioms, are stated without proof.

Theorem: P(¢) 0

Theorem: P(A) 1 - P(A)
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Theorem: P(AMB) = P(B) - P(AMB)

P(A) + P(B) - P(AMB)

Theorem: P(AUB)

Two more definitions, related to the intuitively obvious technique for
calculating the probability of the simultaneous occurrence of two
independent events, are:

Definition: Two events, A and B, are independent if and only if
P(A™B) = P(A)P(B).

Definition: The conditional probability of B occurring given that A has
occurred (written P(B|A)) is P(B|A) = P(BMA)/P(A) if
P(A) > 0. If P(A) = 0, we define P(B|A) = O.

The above definitions and theorems embody much of that which is usually
taken as intuitive notions of probability. To extend their utilization
to statistics, one requires the concept of random variables and distri-
bution functions.

Definition: A random variable X is a real-valued function of the
elements of a sample space S.

Definition: A random variable X is discrete if its range forms a discrete
(couttble) set of real numbers. A random variable X is
continuous if its range forms a continuous (uncountable)
set of real numbers and the probability of X equalling any
single value is O.

Definition: The probability function for X is a function, P,(x), of a
real variable x and is defined to be p_(x) = P(§(w)=x)
where w denotes a generic element of tge sample space.

Definition: The distribution function for a random variable X (denoted
F._(x)) is a function of a real variable x such that: (1) the
domain of definition of F_, is the whole real line, and (2) for

any real x, Fx(x) = P(XSX§.

Definition: The probability density function for a continuous random
variable Y (denoted f_(y)) is a function of a real variable
y such that (1) the domain of fY is the whole real line and

(2) for any real numer t

Fe(t) = [T £,(y) dy

Definition: (1) If X is a discrete random variable with probability function
pX(x), the expected value of H(X) is defined to be:
E[H(X)] = IH(x)py(x)
(2) If X is a continuous’ random variable with probability
density function fX(x), the expected value of H(X) is defined

to be

B[R] = [T HGE) £, (x)dx
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Definition: The average value of a random variable X is defined to be
= E[X] .

Hx

Definition: The varience of a random variable X is defined to be:
02 = E[ (X-u_)2]. The square root of the varience is the
s%andard deviation of X.

There are only several probability distributions that are of interest
to us. These are the binomial, Poisson, exponential and normal (or
Gaussian) distributions.

Binomial Random Variable

We first define a Bernoulli trial as an experiment which has two
possible outcomes: success and failure. The probability for success is
denoted by p and the probability for failure by gq=1-p. If X denotes the
number of successes in n repeated independent Bernoulli trials, then X
is called the Binomial random variable with parameters n and p. It is
straightforward to calculate the Binomial probability function. There
are n!/[ (n-x)!x!] ways of ordering x successes in a sequence of n trials.
Each of these orderings has a probability p q of occurring. Thus:

PX(X) = ( )qun - where

(Q] = n!/[ (n-x)!x!] is the Binomial coefficient.
It is easy to show that for the Binomial distribution My = np and 0§ = npq.

A QA
“n

Poisson Random Variable

The Poisson random variable is a limiting case of the binomial random
variable. This is so because beeause a Poisson process with parameter A
is defined as a sequence of intervals for which the occurrence of events
are possible. For a Poisson process the intervals can be made short enough
so that the probability of two or more events occurring per interval is
negligible. The intervals are usually in units of space or time and the
Poisson parameter ) is the probability per unit interval for the occurrence
of an event. For an interval of length s, and for a Poisson process with
parameter )\, the Poisson random variable X is the number of successes k
within this interval. We shall now show that

p (k) = (s)e™™S
k!

As mentioned before, the Poisson process is a limiting case of the Binomial
distribution. Each Bernoulli trial is an interval of length s/n and there
are n such trials, where n is large enough so that the probability of two
events per trial is negligible. Thus

(B (s/n)*(1-2s/n)"

p, (k)
X K! 1-Xs/

ko)™ (1-1/n) (1=2/n) =~ (I~C=1) fn) (1-xsfo)™/(1-Asin)*

k
n

s

n(n-1) (n-2) *** (n-k+1) fAs/n )k(l—)\s/n)n
n

12
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In the limit as n &+

k =As
py(k) + (As) e which is the desired result.
k!
The mean and varience for the Poisson random variable can be shown to be
My = As and 0)2( = Xs.

Exponential Random Variable

This is our first example of a random variable with a continuous
probability density. The exponential random variable T with parameter A
is defined to be the interval between an arbitrary starting point and the
point of occurrence for the first event for a Poisson process with parameter
A. To derive the probapility density function, f_(s), we note that the
probability of no successes from s = 0 to s is exp(-As)(this is the case for
k=0 for the Poisson distribution). The probability of an event within ds
is Ads so that s

fT(s) = e

It can be shown that My = 1/ and o% = 1/22.

Normal Random Variable
This is undoubtedly the most important random variable to the scientist.

This is due to the fact that the majority of experimental distributions are
at least approximately determined by normal variations. There is a theoreti-
cal explanation for this fact which is embodied in the central limit theorem.
We will come back to this theorem after we have first discussed the proper-
ties of the normal, or as it is also called, the Gaussian probability density
function. A random variable is said to be normally distributed if and only
if its probability density function is:

fX(X) - : 1 e‘(X-u)z/?-Oz

ov2m
The parameter u can be any real number while ¢ must be positive. As the
symbols suggest, the mean and varience of the normal distribution are
UX = u and 02 = g2,

We now gefine the moment generating function which is quite useful in

obtaining information relating to probability distributions.

Definition: The moment-generating function, (t), for a random variable X
is defined to be mx(t) = E[ exp (£X)] .

The name moment-generating function comes from the easily proved fact that

(k) . S -
m O = _dm®)], o= m
dt

where is the kth moment of the distribution, i.e. = E[Xk]. It is
intuitively obvious that a probability density function is determined by

its moments. The first moment determines an average value, the second moment
is related to the peak width, the third to the assymmetry etc. This fact can
be proven rigorously if we assume that only posit&vngalues of a random

00

variable are allowed. 1In this case mX(t)=mY(t)=f0e fx(x)dx =f0e yfY(x)dx
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or L (-t) = L _(-t) where L denotes the Laplace transform. Since Laplace
trans%orms are invertable this means that f_(x) = f_(x). The proof of the
general case can be found in advanced texts”on probgbility. We state the

theorem below.

Theorem: Assume that X and Y are random variables with moment generating
functions (t) and (t) respectively. Then (t) = (t) if and
only if fXT§) = fY(t?onr all t. X "z

We will now introduce the concept of jointly distributed random variables:
Definition: Given an experiment, the pair (X,Y) is called a two dimensional

random variable if each of X and Y associates a real number
with every element of S.

This definition is easily extended to n dimensional random variables, which
are n-tuples (X,,X,,***X ). The random variables X,,X,.,* " "X are said to
; 2 n 12 n
be independent 1f
n

PX(X) =.H pX.(Xi) where

= i=1 i
the underlines denote n-tuples. We now state and prove the following use-
ful theorem:

Theorem: If X.,X,,°**X are independent, identically distributed random
variables and

Y =

i

1Xi then mY(t) =[mX(t)]n.

SEX FEX e 'tXn] - K etXH ] etx2] ceE] otX

o~

Eer] = ® o]

[mg (£)]7°

Proof: mX(t)

A very useful theorem makes use of this result.

Theorem: Let X.,X,,***X be independent, identically distributed normal

random variabl@s with parameters pu and o. The Y = X1+X2+---Xn
is a normal random variable with parameters nu and no2.

5 I . 2
Proof: We first evaluate mX(t) = 1 f_metxe (x-u)</20 dx

ov2m
Using the relation | 2
g +b§&= vYn/a eb ﬂ?%’ we find

-—00

+t2g2 p
R /2 From the previous theorem,

mX(t) =

(t) = Thus, from the uniqueness property of
generating functions Y is normally distributed with mean np and
varience no?.

Jout + no?t2/2

The usefullness of the above result will be apparent when we consider
sampling theory and statistics.
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We quote below a theorem which is independent of the distribution.
Proof will be left as an exercise.

Theorem: Let X., ,"'Xn be independent random variables with means
ul,u%,"',pn and variances o%,c%,---,ci respectively. If

n
= ' =
Y z aiXi (ai s are constants) then Hy iZlaiui and

i=1
n
02 = ) aZo? .
Y=
— %
It follows from this theorem that X = E-z Xi has mean ui = u (if ux = qu
i=1 i
for all i) and variance 022 = ¢2/n. The variance of the distribution of

-
a mean is smaller than the variance of the single distribution by a factor
1/n. This fact is of considerable importance for statistical inference.
We now state and give a heuristic proof of the Central Limit Theorem:

Theorem: Suppose X ,X2,X -++ is a sequence of indepedent, identically
distributéd random variables,each with mean u and variance o2.
Define the sequence 21,22,23,"' by Zn=(Xn—u)/(o//E) n=1,2,3,°""

n
where Xn= z Xi/n. Then for all real t, lim FZ (t) = Nz(t)
i=1 n>e n
where N_(t) is the standard normal distribution function (i.e.
the ranéom variable Z has a mean value of 0 and a variance of 1).

Proof: We have seen above that E[X ]= p and E[ (X -u)2] = 02/n. Thus
E[Z ] = 0 and E[an] = 1. "The moment generating function for Zn

is:
m, (£) = He""n] = Bt/ (@/YR)) gy E W)/ (ov),
. i=1
- E E[et(xi—u)/(o/g)]
i=1

n
mzn(t) = [ m(X—u)/o(t//E)]

: o)

1n mzn(t) n ln[m(X—u)/o(t/ n)]
The moment generating function can be written as a power series with
moments as coefficients. Since (X-u)/o = 0 and cz(X—u)/o = 1 we have

2 2 3
m(X—u)/o(t) =1+ t</2 +ﬁf /3! + ...

_ 2 3 < I
and m(x_u)/o(t//;) =1+ t4</2n + m3(t§{;) + m4(t£f;) +

=1+ a(t)
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1n m, (t) = n In(l+a(t)) = n (a(t)-a2(t)/2+a3(t)/3----)

n

K for |a] <1
As n + », na » t2/2, na + 0 if k=2,3,4,++-
2
So lim 1n m,, (t) = t2/2 or lim m,, (t) = et /2
n->e n n>* n

But this is just the moment generating function for a normal random
variable with mean 0 and variance 1. This completes the proof.

Thus, the arithmetic average of a large number of independent,
identically distributed random variables is distributed according to
the normal distribution in the limit of large sample size, regardless of
the nature of the individual random variable distribution. This explains
the fact that the normal distribution is a good approximation for a
large number of probability laws. It is impossible to determine in general
how large n must be for a given probability law to be approximated by a
normal distribution to a given degree of accuracy. An important example
of this will be seen later for the various energy straggling distributions.
Two familiar distributions which are readily approximated by the normal
distribution are the binomial and Poisson distributions. As a rule of
thumb, the normal approximation to the binomial distribution is good if
the number of trials n 2 30 and np = 5 (since the Poisson distribution
is in fact a limiting case of the binomial distribution as n + «, we see
that a Gaussian distribution approximates a Poisson distribution if As = 5).

Statistical Inference

Up to this point we have assumed well defined sample spaces, experi-
ments and probability laws. Prediction of expected values followed in a
straightforward manner. Each probability law had well defined parameters
which characterized the law.

The experimentalist operates in a shadier world. He is doing
experiments to unravel the parameters of an unknown probability law. There
are often competing theories to be decided amongst on the basis of
experimental results, and each of these theories has a different probability
law. The subject of determining the best probability law and the best
estimates of the parameters which characterize that law is known as
statistical inference. The notion of sampling is central to this subject.
A sequence of experiments on the random variable X is known as a random
sample. A random sample of size n is an n-tuple of random variables
X.,X **X . Any function of the elements of a random sample is called a

é 22 . 'n o ;

statistic. Thus ZX,/n is a statistic and is refﬁrred to as the sample mean.
The k'th sample momént is defined to be = (ZX. )/n. Note that means and
moments take on different meanings than in prob%bility theory. In sampling
theory, moments are statistics and as such are random variables. One can
repeat a sample many times, each time obtaining a different value for a
sample moment. A straightforward but important theorem regarding sample

moments follows:

Theorem: Let Xy5Xo, X be a random sample of X. Then E[M ]=m where

is the kzth moment of the sample and m is the k'th moment of X.

16
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n
- gl ko _ 1 =
Proof: E[Mk]— E [niZlXi ] = nz mo = m where we have used the fact
that the elements of a random sample are identically distributed.

Thus, if we let X = then E[X] = u. An important corollary follows
the definition of the sampie variance.

Definition: If X, 6 ,X,,***,X are a random sample of X, the sample variance
is defined to be

2

s i¥§)2 where X is the sample mean.

This is probably familiar to most of you as an estimate of the
variance of the parent distribution. The justification for this follows

from the fact that E[s?] = 02 as can be seen below:
B o¥] =t B BE T = —— B ol -a52] = <Bfm -~ 5 T]
n-1 i n-1 2 n-1 2
But, .
E[X?2] = B[ R-1)2] + p2 = o2/n + M2 so
E[s?] = 27 [0% + 42 - 42 - 0?/n] = o2

The most important distribution function in the study of statistics
and in the analysis of experimental data is that of the chi-squared (xz)
random variable. It is defined in the following way:

Definition: If X X -Xn is a random sample of a normal random variable
X w1%h mean Y and variance 02, then
n o (X;-u)?
Y= ) ———1r——-
i=1

is a 2 random variable with n degrees of freedom.

Theorem: The probability density function for the X2 random variable
with n degrees of freedom is
11 (/2)-1 -y/2

£y = va/y iz s ¥ B 8

0 otherw1se.

n w3 Y2 S
Proof: mY(t) = E[etY] = 121E[et(Xi welo ] = [m(x_u)g/oz(t)]n
=[m, ()]" x2 = (X-u)?/o?
Xl 1
2 2
m 5 (t) = __L__fimet(x—p)zlcze—(x—u) /20 dx

X 5

1 mo

1 o —(x-p)2(1-2t)/202
————-f;me dx; if y =
v2to

X—U,
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1 o —y2(1-2t)/202 :
m o (t) = f & dx and if x2 = y2(1-2t)/o?
X1 /Z_TT.O' -
oo —x2 - 1
m ,(t) = 1 g T f e ¥ /de = (1=2t) *
Xl /2—11'0 (1—2t) =
56 m, (t) = (1-2¢) /2
_oqe 1 1 n/2-1 -y/2 ty 1 © n/2-1 y(t-k)
But L = j' T e e g Cdy = e d
0 T(n/2) ,n/2 F(n/2)2"/2% y S y
Let x = -y(t-%)
1 o n/2-1 1 -X
I B e | 32 e (+dx)
r(n/2)2%/% "0 e Ty
) | 1 1
I = r(n/2) = —————
ren/2)2™2 (—e43)™ 2 (1-2¢)™/2

This completes the proof.
It can be shown thatjukz = n and 02X2 = 2n.

Theorem: If Y and Z are independent x? random variables with m and n degrees
of freedom respectively, then Y + Z is a X2 random variable with
mtn degrees of freedom.

Proof: mY+Z(t) = E[etYetZ] = mY(t)mZ(t) = (1—2t)—m/2(1—2t)—n/2
= (1-2¢) (@) /2
I(X, -2 I(X,-X)2 | =
It is easy to show that 102 - ;2 + (§5732

The term on the left is a x2 random variable with n degrees of freedom and
the second term on the right is a x2 random variable with 1 degree of freedom.
From the above theorem, it is plausible, and in fact can be proved that:
I(X;-X)?2

g is a x2 random variable with n-1 degrees of freedom.

The meaning of the term degrees of freedom becomes clear: one degree
of freedom has been lost in determining the mean value X. Effectively,
there are only n-1 independent elements in the sample. One has been used
up to determine X.

If we are sampling a single random variable, the x2 distribution can
be used to evaluate a confidence level for an estimate of o if the random
variable is known to be Gaussian. Most probability texts and compilations
of mathematical functions have tables of the chi-squared distribution which
can be used for this purpose. A simple extention of the chi-squared concept
also allows one to determine the goodness of fit of a hypothesized function
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y(x) to a collection of data y.(x), where x is assumed to be known. As
an example, x may be a channel on a pulse height analyzer and y, may be
the number of observed counts in the i'th channel, while y(x) would be
the expected number of counts based on some theory. It can then be shown
that the statistic: -~ 2

n [y .-y(x,)]

i i

i=1 1,

(where i runs over the number of values of x., and where o, is the known
standard deviation for the normally distributed random variable y(xi)) is
a chi-squared random variable with v degrees of freedom where v=n-m, m
beind the number of parameters used to estimate the function y(x). The
method of maximum likelyhood is used to evaluate the m functional
parameters. In this method, parameters are selected which maximize the
theoretical probability of observing the actual outcome of an experiment.
For the case of normally distributed random variables at each x., it can
be shown that the method of maximum likelyhood is equivalent to the least
squares method whereby the statistic X2 is minimized by adjusting the
parameters of y(x.). Goodness of fit is then checked by looking up the
minimized value of chi-squared in a mathematical table. If the chi-squared
table yields the result that the probability for observing the actual
result is less than 0.1%, one says the discrepancy is very highly
significant, if less than 1% it is highly significant and if less than 5%
it is significant. Inapproprriate usage of these words could cause mis-
understanding so it would serve you well to memorize them. Discrepancy,
in the present context, is taken to imply that the assumed form of the
function y(x) is not correct. It is important to realize that a chi-squared
test never can be used to prove that a given function is the correct one, it
can only be used to reject hypothetical functions.

Having lapsed momentarily into a somewhat sloppy discussion of chi-
squared in the hopes of striking a familiar note we will now try to regain
our composure with the following definition:

Definition: Supose that X is a random variable whose probability law depends
on an unknown parameter 6. Given a random sample of X, K ,X,,***,X ,
the two statistics L, and L2 form a 100(1-a)Z% confidence {nterval

for 6 if P(L1<6<12) 1 l-a.

The concept of a confidence interval is quite important to an experi-
mentalist since this is as close as he or she can generally come to the
truth. Measurements are always of the nature of random samples and the
unknowns are the parameters of probability distributions. Thus an experi-
mentalist cannot hope to determine 6 but it is within his or her grasp to
determine the statistics L., and L, which bracket 6. The goal of the
experimentalist is to determine L, and L, which are very nearly equal to
each other for values of o close to zero. As an example, suppose we take
a random sample of a normal random variable with unknown p but of known
variance 2. We know that X is a normal random variable with mean p and
varience 02/n so that it is clear that (X-o/vn, ¥+o0/v/n) forms a 68.3%
confidence interval for p. What if we do not know what o is however?
There is something called the t-distribution, which is quite close to the
normal distribution and, which enables us to form confidence intervals in
this case. This follows from the theorem below which we will state without

proof:
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Theorem: Let X.,X,,***X be a random sample of a normal random variable
with mean and variance o2. Then (X-u)/(s//n) has the
t-distribution with n-1 degrees of freedom where s is the sample
variance and the t-distribution density function with m degrees

of freedom is:

I((mt+1)/2)
T'(m/2) Ymm

z/m)—(m+l)/2

fT(t) = (1+t

By consulting a table of t-distributions we can find the 68.3% confidence
intervals for y and we see they have the form:

1 1
(X—ks/né, X+ks/n6) where k is given below for various n:

n k
2 2.26
5 1.22
10 1.12
20 1.08

We see that as n gets larger the distinction between the t-distribution and
the Gaussian gets smaller (A Gaussian distribution would have k=1).

We remind you that you already know how to form confidence intervals
for an unknown varience o2 of a normal random variable by taking a random
sample Xl,Xz,---Xn and forming the sample mean X. This is so since

Z(X,4§)2/02 is a chi-squared random variable with n-1 degrees of freedom.
Thus, if x2,. denotes the point for which P(x%<x2,.) = a/2 and P(x2<x? ) =
a/2 a/2 1-a/2
1-a/2 then . o
L1 = Z(Xi—X)Z/x%_a/2 and L2 = Z(Xi—X)z/xg/2 form
a 100(1-a)% confidence interval.

Two other distributions exist which are useful in statistical inference
and we will close our discussion by briefly touching on these. One of these
is the F distribution. If two statistics x? and x% are determined which
follow the chi-squared distribution, the ratio

(x%/vl)/(xg/vz) (vl and v, are the number of degrees of

freedom for y2 and x2 respectively) is distributed according to the F dis-
tribution (F Stands for R.A. Fisher, one of the most influential workers in
the field of statistics). Like the normal, t- and X2 distributions, tables
of the F distribution can be found in most probability and statistics texts.
The most common application of the F-test is in determining if a fit of data
to a multi-parameter function is significantly improved by adding another
parameter. To simplify tabulations it is convenient to use the statistic

_ xX2(m-1) - x%2(m)
x% (m) / (N-m-1)

where m is the number of parameters used. The additivity feature of x2
random variables implies that the numerator is a chi-squared random variable
with 1 degree of freedom. Thus instead of tabulating F distributions for

a plane (v,,v,) we merely need to tabulate for various values of v,. If

the added parameter is useful, the observed value of F will correspond to

a small probability for such an observation, as computed from tabulated
values of the F distribution. This is so because the statistic F does not
actually correspond to an F random variable unless the data is fit by the
proprer curve.
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This is of course the same reasonlng that applies to the chi-squared test.
The statistic Z(X X)2/0 is only a X random variable if X is the sample
mean. For exactly the same reason, Z(y -y(x.)¥o? is a x2 random variable
only if y(x.,) is the maximum likelyhood estimate of the actual, albeit
unknown, average value of the random variable y(x.).

The chi-squared and F tests for goodness of %1ts are known as
"distribution dependent tests.'" In order to use chi-squared one needs to
know the variances at each x, and one needs to know that the distributions
y(x.) are normal. The F test is something of an improvement in that the
variances cancel out although it still only works for Gaussian distributions
and it only allows one to decide if one fit is better than another and not
if either one is consistent with the correct function (if one does not know
the variance at x, it is impossible to asses goodness of fit since it is
conceivable withifi the realm of statistics that a set of scattered data
points actually reflect a "scattered" parent function). There exist a number
of tests which are referred to as distribution free tests. These can be
applied to a data set for which we have complete ignorance regarding the
nature of the parent distribution. In general, they are all based on
arranging observations and ranking them in some way. One such test is the

run test. Let X ,X : X be an ordered sample and let Y.,Y, ,-*°Y be a
second ordered sampfe (by Ordered we mean X,<X.<...<X ). f we let
Z 2y ,Z denote the ordered sampl@ag conSisting of the X's and Y's

then“we define a "run" as a sequence of one or more X's or one or more Y's.

Let R denote the number of runs. For m*11 and =1l it can be shown that
Mp = %LHIP- +1 and 01;' = 2mn (2mn-m-n)

(mrtn) ? (mtn+1)

and that if |p_-R|/o, = 1.645,1.96,2.33 or 2.58 we can reject the hypothesis

that the samples come from the same population at the 5, 2.5, 1.0 or 0.5%

level respectively. One possible use for this test is to determine whether

or not a distribution is actually random. Consider the data below and the

best fit straight line.

X,Y
Let X,,X,,""", denote the abscissas of those points which lie below the
line and let y S A denote the abscissas of the points above the line.

If the parent 1s ributlon is truly random, the ordered sample of x's and
y's will pass the run test. Note that we do not require <n> = <m>, i.e. it
is not necessary for the parent distribution to even be symmetrically dis-
tributed about the line, let alone Gaussian. This is a very powerful way
to test the hypothesis that a line (it does not have to be a linear fit)

is an acceptable fit of randomly distributed data. If the test fails we
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can reject either the fit or the assumption of randomness.

In closing we again caution you against using statistics as a crutch.
It is very rare for the probability distributions encountered in the real
world to be as clean and well defined as those found in mathematical theorems.
Even if one is fairly confident that an experimental distribution is
Gaussian, it is nearly impossible to eliminate the possibility that a few
scattered points far from the peak are not part of a tail to the distribu-
tion. Tails are just one problem to contend with. Among the many other
problems is the fact that in a very large fraction of instances one knows
for sure that he is dealing with a situation in which the requirements for
the standard tests for hypothesis are not met. For example,suppose one is
testing the hypothesis that a histogram is fit by a Gaussian function.
Suppose the i'th bin of the histogram has N, counts. Let E, be the expected
number of counts in this bin based on the assumed Gaussian function:

E, = K exp [—(i—ip)z/(zoz>1

where i is the average bin (note that while i is an integer, i_ does not
need toPbe an integer). Estimates of the parameters ip and o can be obtained

via the relations:

1
P
2

TiN./IN,
1 L

z(i—ip)%%Z%Ni-l)

To determine K we must minimize the statistic
(N,-E,)?
L - b 1
e e

o
i

g

But what do we use for 02? Since the process of having points fall into a
given bin in a histogram is binomial, the variance , 0%, of the number of
counts in the bin is pqIN, where p is the probability that a bin is added
to for any given event and q=l1-p. If there are many populated bins or if
a given bin population is very small compared to that of other bins then q
is nearly equal to 1 and the varience is simply ~pIN, or E,. This is the
variance one expects from a Poisson distribution which follows from the fact
that a Poisson distribution is a good approximation to a binomial distribu-
tion for a small value of p. Thug we can write:

, o (E)

X" = E,

i

This statistic is minimized to determine K. Can we then use the minimized
X2 to determine goodness of fit? Strictly speaking the answer is no. Since
the data is distributed according to Poisson statistics, the use of the
chi-squared test, which requires normal variations, is not valid. However
it should be recalled that for E, > 5, a normal approximation to the Poisson
distribution is justified. Thus if bins of unequal width are arranged so
that E, > 5, we can , in an approximate sort of way, use the x2 distribution
with Zﬁ,-3 degrees of freedom for a test of goodness of fit. 1In a similar
crude ménnef, one often simply uses N, as an estimate of 02 rather than the
actual expected number of counts in bin i. What then has ﬁappened to math-
ematical precision? It has simply evolved. The fact of the matter is that
the theory of statistics would be useless unless some consideration is given
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to the fact that the rigorous mathematical requirements are almost

never satisfied in the real world. To cover themselves, mathematicians
have come up with a word which precisely defines how one copes with
imprecision. The word is robustness. A procedure is robust if it still
works fairly well even if the assumptions are not quite satisfied. Of
course, physicists have long known about robustness. Experiments are
never perfect, but good ones work fairly well.





