
Physics 25 Problem Set 6

Harry Nelson

due Monday, May 15

Please make your work neat, clear, and easy to follow. It is hard to grade sloppy work accurately.
Generally, make a clear diagram, and label quantities. Derive symbolic answers, and then plug in
numbers after a symbolic answer is available.

1. In this problem let’s count the number of microstates present in the electromagnetic field inside
a conducting box of dimensions Lx × Ly × Lz. We’ll ignore quantum mechanics at first, so
this gives the so-called ‘ultraviolet catastrophe,’ which means the total energy seems to blow
up as the wavelength of the radiation goes to zero. Imagine one corner of the cavity being at
(x, y, z) = (0, 0, 0) and then the cavity being in 0 < x < Lx, 0 < y < Ly, 0 < z < Lz. In this
situation, the electric field E(x, t) has the following form:

E(x, t) = (E1n1 + E2n2)× f(x, y, z, t)
f(x, y, z, t) = sin(kxx) sin(kyy) sin(kzz) cos(ωt)

In the above, n1 and n2 are unit vectors that describe the two directions of E (polarizations)
that are perpendicular to the wavevector k = kxx̂ + kyŷ + kzẑ, and E1 and E2 are the electric
field strengths in those directions. Each of kx, ky an kz must be taken to be positive, because
negative values for these wavevector components merely flip the sign of f(x, y, z, t), which is
already described by negative values of E1 and E2.

(a) The components of E must satisfy the wave equation,

∇2E =
1

c2

∂E

∂t2

Use this equation to relate k =
√

k2
x + k2

y + k2
z to ω. Then, you know that the wavelength

λ = (c/ν) = (2πc/ω), you can relate k to λ.

(b) Show that:

∆k = −2π
∆λ

λ2

(c) For E to vanish at the walls of the cavities, kx, ky, and kz (which are all positive in value)
must take on only certain values; each is proportional to a positive integer; we’ll call the
respective integers nx, ny, and nz. Find the constant of proportionality between kx and nx,
ky and ny, and kz and nz.

(d) To count the number of microstates, it is useful visualize the 3-dimensional space of kx, ky,
and kz; this is sometimes called k-space. Since all three of these components are positive,
only one octant of 3-d space (that octant where the components are positive) is present in
k-space. Imagine a dot in k-space that corresponds to each value of (kx, ky, kz) that is allowed
by the boundary conditions. What is the density of these dots; that is, in a given volume
of k-space, there will be some number of dots; find the ratio of that number of dots to the
volume of k-space they inhabit. A simple way to do this is just consider 1 dot and reason out
the volume that it sits at the center of. Note that the volume here is not in physical space,
so the dimensions of the density are not 1/(length)3.



(e) Now we count the number of microstates between wavelengths of λ and λ + ∆λ:

i. Find the volume of k-space that is bounded by the k that corresponds to λ and the k+∆k
that corresponds to λ + ∆λ. Evaluate the volume in terms of k, ∆k, and constants like
π. Draw a picture of this volume... it is a thin sheet of thickness ∆k that covers 1/8
portion of a sphere of radius k.

ii. Use the density of dots (that is, density of microstates) and the volume to to calculate
the number of microstates between k and k + ∆k. Then convert the k and the ∆k to λ
and ∆λ.

(f) If the walls of the cavity are at absolute temperature T , and if the electromagnetic field is in
thermal equilibrium with the walls, then each microstate of the field must have energy 2kT ;
where the 2 arises from the 2 orientations of the electric field. Use this concept of thermal
equilibrium to deduce that the density of energy inside the wavelength interval ∆λ, that is,
the total energy divided by the volume of the cavity, denoted ρE, is:

ρE =
8πkT

λ4
∆λ

.

(g) The flux of radiation energy out of a small hole in the cavity will then be equal to the velocity
times the energy density; the flux in the wavelength interval ∆λ, which the book (page 26)
calls E(λ, T ), is then:

E(λ, T ) = c× ρE

∆λ
=

8πckT

λ4

Show that this equation agrees with Equation (39a) on page 26 of the book, in the limit
that (hc/(λkT )) << 1. Note that the quantum-mechanical constant h is absent from this
equation.

2. Make a log-log plot of E(λ, T ) for wavelengths from 10 nm to 10 cm for the three temperatures
(on the same plot):

(a) T = 2.725 K, the temperature of the radiation left over from the Big Bang.

(b) T = 300 K, which is about room temperature.

(c) T = 4300 K, which is about the temperature of the sun.

There is a mathematica notebook on the course Web page that should help you with this plot. Use
expression (35a) from page 24 of the book to indicate the λmax on the plot for each temperature.


