
Physics 22 Problem Set 4

Harry Nelson

due Monday, April 30, In Class

Course Info: This week we study orbits in a gravitational (or electric) field. Read Chapter 9,
sections 9.6-note 9.1, pp. 390-410.

The instructor is Harry Nelson, the TA is Joel Varley. A web page for the course is set up at
http://hep.ucsb.edu/courses/ph22.

We meet MWF 1:00-1:50pm in 1640 Broida. There are two sections, attendance at both is
mandatory. Joel Varley’s section will take place Friday 11:00-11:50pm in 1802 Psychology, and Harry
Nelson’s will take place Friday 2:00-2:50pm in 2129 Girvetz. Harry Nelson’s office hours will follow
section until 5:00pm on Friday, either in 2129 Girvetz (if possible) or in the PSC. Joel Varley’s office
hours will will take place in the Physics Study Room (1019 Broida) on Tuesday from 9:00am to 10:00am,
Thursday from 9:00am to 10:00am, and Friday noon-1:00pm.

Please make your work neat, clear, and easy to follow. It is hard to grade sloppy work accurately.
Generally, make a clear diagram, and label quantities. Derive symbolic answers, and then plug in
numbers after a symbolic answer is available.

1. An Earth-launched satellite is in a circular orbit of radius Rs about the center of the Earth.
The satellite takes exactly T = 24 hours to make one complete orbit of the Earth, and the
satellite is in the plane of the Earth’s equator. This type of satellite is known as geosynchronous,
because they are always above a particular Earth longitude. Find an expression for Rs/Re, where
Re = 6.38× 106 m is the Earth’s radius, in terms of Re, the acceleration of gravity g = 9.8 m/s2,
and T , and then numerically evaluate Rs/Re. Take a look at the following website, in particular
the ‘JTrack’ Java Applet:

http://science.nasa.gov/Realtime/jtrack/3d/JTrack3D.html

and see if you can find the geosynchronous satellites.

2. In this problem we’ll systematically work through the slingshot effect for a spaceship sitting at
rest near Jupiter.

(a) If we approximate Jupiter’s orbit about the Sun as circular, its distance from the Sun is
RJ = 7.8 × 1011 m. Find the speed of Jupiter, vJ , symbolically as a function of Newton’s
constant G = 6.7 × 10−11 m3kg−1s−2, the mass of the Sun Ms = 2.0 × 1030 kg, and RJ , and
evaluate the speed numerically. Answer: vJ = 1.3× 104 m/s.

(b) Find, symbolically and numerically, the velocity a body must achieve to escape from the
Sun, assuming that the body starts from a distance RJ from the Sun.

Answer: 1.9× 104 m/s

(c) Imagine Jupiter approaches a spaceship, as shown in Figure 1. Let’s work through the
parameterization of the orbit of the spaceship relative to Jupiter. The first step is to ‘run
alongside Jupiter’ at the velocity vJ , and in this reference frame, which is Jupiter’s rest frame,
the spaceship has velocity −vJ . Then, evaluate the orbit of the spaceship around Jupiter in



Figure 1: Spaceship being approached by Jupiter, for use in Problem 2c.

this frame. A good sequence of steps to evaluate an orbit is to find `, the angular momentum
of the orbit, and then find r0, the radius of the circular orbit with the same `, then find ε, the
eccentricity, which depends on the energy relative to the energy of the circular orbit at r0.
Knowing these quantities allows the description of the orbit, as parameterized in Equation
9.21 on page 392 of your text.

i. Evaluate the angular momentum of the spaceship in the following form:

` = α×ms

[
b

ρJ

]
and find the constant α both symbolically and numerically. The constant ρJ = 7.1×107 m
is the radius of Jupiter itself, and ms is the mass of the spaceship.

Answer α = 9.3× 1011 m2/s

ii. Find the circular orbit about Jupiter, r0, that has the same angular momentum as the
spaceship. Do this by finding the constant β, both numerically in the formula:

r0 = β

[
b

ρJ

]2

.

You’ll need the mass of Jupiter, MJ = 1.9× 1027 kg. Answer β = 6.8× 106 m

iii. Find the magnitude of the total energy |Ec| (the sum of potential energy and kinetic
energy) of the spaceship if it were in a circular orbit of radius r0. Put the answer in the
form:

|Ec| = γms

[ρJ

b

]2

and evaluate γ numerically. Answer γ = 9.4× 109 Joules/kg



iv. Calculate the eccentricity, which depends on the actual total energy of the spaceship,
E, and the Ec computed above. Take E = (1/2)msv

2
J , which is the assumption that the

spaceship starts infinitely far from Jupiter. Then, the eccentricity is:

ε =

√
1 +

E

|Ec|

Employing the approximation that:

√
1 + x ≈ 1 + x/2

Evaluate the constant δ in the relationship:

ε ≈ 1 + δ

[
b

ρJ

]2

Answer δ = 4.6× 10−3

v. The main challenge in using the slingshot effect is to avoid crash landing on Jupiter.
The distance of closest approach of the spaceship to Jupiter, known as the perijove
(perihelion refers to the Sun, and perigee to the Earth; the generic term is periapsis),
can be evaluated given r0 and ε. Show that the perijove rmin, satisfies:

rmin ≈
β

[
b

ρJ

]2

2 + δ
[

b
ρJ

]2 .

Solve for the minimum b that prevents crashing into Jupiter. Answer b = 4.7ρJ

vi. Evaluate the angle ψ through which the spacecraft swings between its initial direction
and its final direction. The angle ψ is shown on page 394 of your text.

Answer ψ = 130◦

(d) The last step is to find the final speed of the spacecraft in the original frame. You do this
by adding back the velocity of Jupiter to the proper component of the spacecraft, and then
by using the Pythagorean theorem. Does the final speed exceed the escape velocity... that
is, can the spaceship escape our Solar System?


