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As we alr‘cany‘ showed in Section 4.2. the allowed components of the wave vecto,
k are then given by (see (4.57)) S
2n 2n 2
k.=—n,, k=0, k=g :
- e T (8.46)
\?hcrc 0, and n_ are positive or negative integers. or zero. The number of spa:
tial orbitals in the range dk = dk, dk, dk.is (L/2r)* dk, dk, dk. and this nurr;be
must be n?ulllpllcd by 2 to take into account the two possible spin states. A unit
volume of k-space will therefore accommodate V/(41') electrons (with V' = L%
Thus_‘lhc individual electron states having energies up to £ = #°k%/(2m) will blr
co.mam‘cd within a sphere in k-space. of radius . the number N of these state:
being given by \

. Vo4
N=——nki= LV/\'?‘
4n° 3 3r?
1 [2m) VE®
| ) (8.47)

in agreement with (8.36).
We ha\"e seen above that in the ground state of the Fermi electron oas the N
clectrons‘hll all the states up to the Fermi energy E. Thus in k-space allbstates L:
to a maximum value of k equal to k; are then filled, while the states for wilic}l:
k > ke are empty. In other words all occupied spin-orbitals of a Fermi electron gas
at 0 K fill a sphere in k-space having radius k.. This sphere. which is called tgh ;
Fermi sphere, obviously contains ‘ » .

— Vki= N

(8.48)
spin-orbitals, so that

ke = (3n°p)'? (8.49)
At th‘e surface of the Fermi sphere, known as the Fermi surface, the energy is the |
Fermi energy -

E.= e ki

FE o F (8.50)

fmdI we note lhat the result (8.41) follows upon substitution of (8.49) in (8 50). It
1S also convenient to introduce the Fermi momentum relocity v and e

g (o P velocity vi and temper-

SN

E,o=<E =y =k
FS = o e = ksl (8.51)

where ky is Boltzmann's constant.
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The Thomas-Fermi theory for multielectron atoms and ions

The theory developed independently by L.H. Thomas and E. Fermi for the
ground state of complex atoms (or ions) having a large number of clectrons is
based on statistical and semi-classical considerations. The N electrons of the sys-
tem are treated as a Fermi electron gas in the ground state, confined to a region
of space by a central potential V(r) which vanishes at infinity. It is assumed that
this potential is slowly varying over a distance which is large compared with the
de Broglie wavelengths of the electrons, so that enough clectrons are present in a
volume where V(r) is nearly constant, and therefore the statistical approach used
in studying the Fermi electron gas can be applied. In addition, since the number
of electrons is large, many of them have high principal quantum numbers, so that
semi-classical methods should be useful.

The aim of the Thomas—Fermi model is to provide a method of calculating the
potential V/(r) and the electron density p(r). These two quantities can first be
related by using the following arguments. The total energy of an electron is writ-
ten as p*/(2m) + V(r). and this energy cannot be positive, otherwise the electron
would escape to infinity. Since the maximum kinetic energy of an electron in a
Fermi clectron gas at 0 K is the Fermi energy E;. we write for the total energy of
the most energetic electrons of the system the classical equation

En=Ee+ V(r) (8.52)

It is clear that E,, must be independent of r. because if this were not the case

electrons would migrate to that region of space where E, is smallest. in order to

lower the total energy of the system. Furthermore, we must have £, < 0. We

note from (8.50) and (8.52) that the quantity k; is now a function of r. That is.
2m

ki(r)= T[Em\ - Vi(r)] (8.53)
%]

Using (8.41) and (8.52) we then have

max

(2m)">
o) = | 22 (= VR (8.54)
\

and we see that p vanishes when V = E_ .. In the classically forbidden region
V > E,, we must set p = 0, since otherwise (8.52) would yield a negative value
of the maximum kinetic energy E;. Let us denote by

o(r)= —lV(r) (8.55)
e

the electrostatic potential and by ¢, = —E,,,,/e a non-negative constant. Setting
D(r) = 0(r) - ¢y (8.56)

we see that p(r) and ®(r) are related by
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()

p(r) = (m\% [ed(r)}?.  @=0 (8.57a)
3t At

=0, O <0 (8.57b)

~

1

The equation @ =0 (that is, ¢ = ¢, or V = E,,.) may be thought of as determining
the *boundary’ r = r, of the atom (ion) in this model. Now, for a neutral atom
(N = Z) the electrostatic potential o(r) vanishes at the boundary, so that we shall
set ¢, = 0 in that case. On the other hand ¢, > 0 for an ion. .

A second relation between p(r) and ®(r) may be obtained as follows. The
sources of the electrostatic potential ¢(r) are:
(i) the point charge Ze of the nucleus, located at the origin;
(ii) the distribution of electricity due to the N electrons.

Treating the charge density —ep(r) of the electrons as continuous. we may use
Poisson’s equation of electrostatics to write

Vo) = L o)) = < o) (8.58)
rdr- &
The equations (8.57a) and (8.58) are two simultaneous equations for p(r) and
®(r). Eliminating p(r) from these equations, we find that for ® = 0

1 d° e [2m 55
S [ = — O(r)f". D=0 (8.59)
rdr? ] 3n’e, [ 7 1 [eo(r)]

On the other hand, when ® < 0 we see from (8.57b) and (8.58) that
& por)=0. ©<0 (8.60)
dr-

For r — 0 the leading term of the electrostatic potential must be due to the
nucleus, so that the boundary condition at r = 0 reads

Ze (8.61)
dne,

lim r®(r) =

On the other hand, since the N electrons of the system are assumed to be confined
to a sphere of radius r,, we must have the ‘normalisation’ condition

- ) R
4n J p(ryr’dr=N (8.62)
0

In order to simplify the above equations, it is convenient to introduce the new
dimensionless variable x and the function y(x) such that

r = bx, rd(r) = 4Z_c* x(x) (8.63)

T,
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where

ks
b= %(Z,)Z" *=(.8853 q, 27 (8.64)
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and a, = (4ng,)A*/(me’) is the first Bohr radius. The relation (8.57) then becomes

Z (x -
- M =4 8.65
P 4nb? ( x J £ (8.65a)

=0, <0 (8.65h)
and the important equation (8.59) may be written in dimensionless form as

&r
dx?

-2

= g2y =0 (8.66)
This is known as the Thomas—Fermi equation. For negative y we see from (8.60)
and (8.63) that

dh
F=o z<0 (8.67)

det
In addition, the boundary condition at r = 0, expressed by (8.61), now reads
2(0)=1 (8.68)

It is clear from (8.66) and (8.67) that y(x) has at most one zero in the interval
(0, +e2). Let x, be the position of this zero. From our above discussion we have
x,=r,/b, where r, is the ‘boundary’ of the system. We also note that y > 0 for x < x,
and y < 0 for x > x,. Moreover, the equation (8.67) has the solution y = C(x - x,),
where C is a negative constant, which must be equal to x’(x,). As a result, the
solution y(x) is entirely determined if we know it for y = 0. We also remark that
for any finite x, the quantity y’(x,) must be different from zero, since otherwise
both x and " would vanish at x = x,, and the equation (8.66) would yield the
unacceptable trivial solution y = 0.

The Thomas-Fermi equation (8.66) is a ‘universal’ equation, which does not
depend on Z, nor on physical constants such as #, m or e which have been ‘scaled
out’ by performing the change of variables (8.63). We also note that it is a second-
order, non-linear differential equation. Since the boundary condition at the origin
(8.68) only specifies one constraint, there exist a whole family of solutions y(x)
satisfying the Thomas—Fermi equation (8.66) and the condition (8.68), which dif-
fer by their initial slope y’(0). It is also clear from (8.66) that all these solutions
must be concave upwards. As illustrated in Fig. 8.4, we can classify them into three
categories:

1. asolution which is asymptotic to the x axis;
2. solutions which vanish for a finite value x = x;
3. solutions which never vanish and diverge for large x.
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0
Figure 8.4 The three categories of solutions of the Thomas-Fermi equation:

(1) neutral atom solution; (2) solution corresponding to a positive ion (N < Z); (3) solution cor-
responding to a neutral atom under pressure.

The physical meaning of the solutions belonging to the first two categories
may be obtained by looking at the ‘normalisation’ condition (8.62). Taking into
account (8.63), (8.65) and (8.66). this condition reads

N=Z f ” Xy de

=Z f \‘ xy” dx
=Zxy' - xly (8.69)
Using the boundary condition (8.68) and the fact that y(x,) = 0, we then have

N-Z
X0 (x) = - S (8.70)

Let us first consider neutral atoms for which N = Z. The condition (8.70) then
requires that y(x;) =0, so that y" should vanish at the same point as . Since this
condition cannot be satisfied for a finite value x; by non-trivial solutions, the point
x, must be at infinity. As a consequence, the solution y(x) corresponding to a
neutral atom must be asymptotic to the x axis, namely

2(e2) =0 (8.71)
and is therefore the (unique) solution classified above in the first category. We

remark that since y(x) vanishes only at infinity. there is no ‘boundary’ to the
neutral atom in the Thomas—Fermi model.
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Table 8.5 Values of the function x(x) for neutral atoms.

x X(x) X X(x) x X(x) x X(x)
0.00 1.000 0.9 0.453 3.4 0.135 9.0 0.029 5
0.02 0.972 1.0 0.425 3.6 0.125 9.5 0.026 8
0.04 0.947 1.2 0.375 3.8 0.116 10 0.024 4
0.06 0.924 1.4 0.333 4.0 0.108 11 0.020 4
0.08 0902 1.6 0.298 4.5 0.0918 12 0.017 2
0.1 0.882 1.8 0.268 5.0 0.0787 13 0.014 7
0.2 0.793 2.0 0.242 5.5 0.0679 14 0.0126
0.3 0.721 2.2 0.220 6.0 0.0592 15 0.010 9
0.4 0.660 2.4 0.201 6.5 0.0521 20 0.005 8
0.5 0.607 2.6 0.185 7.0 0.0461 25 0.003 5
0.6 0.561 238 0.171 7.5 0.0409 30 0.002 3
0.7 0.521 3.0 0.158 8.0 0.0365 40 0.001 1
0.8 0.485 3.2 0.146 8.5 0.0327 50 0.000 63

The Thomas-Fermi equation (8.66) and the boundary conditions (8.68) and
(8.71) define a wniversal function y(x) for all neutral atoms, Values of this
function, obtained by numerical integration, are given in Table 8.5. We remark
from this table that y(x) is monotonically decreasing. It can be shown that the
asymptotic form of y(x) for large x is given by the function 144x~%. At x = 0 one
has (0) = ~1.588 so that in the vicinity of the origin

x(x)=1-1588x+... (8.72)

Knowing the universal function y(x). we can obtain the function @(r). and
hence the electrostatic potential ¢(r), the potential energy V(r) and the density
p(r). Using (8.55), (8.56). (8.63), and remembering that ¢, = 0 for a neutral atom,
we see that in the Thomas-Fermi model the central potential V(r) is given for
neutral atoms by

Ze*
Vir)= - (8.73)
(4rey)r X
As r— 0. we have V(r) — —Ze'/(4ngr). More precisely, we deduce from (8.63),
(8.72) and (8.73) that for small r

2 4/3
Vir) = e—[—é - 1.7942 ] (8.74)
dre, | r a,

or. using atomic units,

Vir)= £, 179427 + ... (8.75)
r
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The first term is the nuclear attraction while the second one, which is repulsive,
arises from the contribution of the electrons. When r — e, we see from (8.71) and
(8.73) that rV(r) — 0. so that the Thomas—Fermi potential (8.73) falls off more
rapidly than 1/r for large r. This behaviour is at variance with the result (8.8c)
which we obtained in our discussion of the central field approximation. The
reason is that the potential V discussed in Section 8.1 is the one felt by an atomic
electron, while the Thomas-Fermi potential (8.73) is that experienced by an
infinitesimal negative test charge. The difference between the two potentials is
due to the statistical and semi-classical approximations made in the Thomas—
Fermi model, the Thomas—Fermi result becoming exact in the limit when # and e
tend to zero, while the number N (= Z) of electrons becomes infinite.

Turning now to the electron density p(r), we see from (8.65a) that it is similar
for all atoms, except for a different length scale, which is determined by the
quantity b (see (8.64)) and is proportional to Z™'%, As a result, the radial scale of
p(r) contracts according to Z'* when Z increases. We remark that for fixed Z the
Thomas-Fermi method is inaccurate at both small r (r < ay/Z) and large r (r > a),
where it overestimates the electron density. Indeed, the Thomas-Fermi electron
density (8.65a) diverges at the origin (as 7~2) and falls off like - as r — oo, while
the correct electron density should remain finite at r = 0. and decrease exponen-
tially for large r. Thus the application of the Thomas—Fermj method is limited
to “intermediate’ distances r between ay/Z and a few times a,. It is worth noting,
however, that in complex atoms most of the electrons are to be found precisely
in this spatial region. Thus we expect the Thomas-Fermi method to be useful in
calculating quantities which depend on the ‘average electron’, such as the total
energy of the atom. On the other hand, quantities which rely on the properties
of the *outer” electrons (such as the ionisation potential) are poorly given in the
Thomas—Fermi model.

We have shown above that a neutral atom has no ‘boundary’ in the Thomas—
Fermi model. Nevertheless, it is possible to define in this case an atomic ‘radius’
R(c) as the radius of a sphere centred at the origin and containing a given fraction
(1 - @) of the Z electrons. We then have (see (8.62))

Ria)
4n f p(rrrdr=(1-a)zZ (8.76)
0
Making the change of variable
R(a)=bX(a) (8.77)
and taking into account (8.63), (8.65) and (8.66), we find for X the equation
X)) = Xx'(X)=a (8.78)

which must be solved numerically. If the same value of «is adopted for all atoms,
(8.78) becomes a ‘universal’ equation and X is the same for all atoms. Using (8.64)
and (8.77) we see that the atomic radius R(@) is then proportional to Z-'*. On the
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other hand. if we set @ = Z7', then R(Z') = bX(Z™') is the radius of a sphere
containing all the atomic electrons except one. The quantity R(Z ') is found to be
aslowly increasing function of Z, such that da, < R(Z") < 6a,. Thus in both cases
the atomic radius is nearly independent of Z. Similarly. the energy of the ‘outer’
electrons — and hence the ionisation potential of the atom — is almost independent
of Z. As a consequence, the Thomas-Fermi model cannot account for the periodic
properties of atoms as a function of Z, discussed in Section 8.2.

Let us now briefly discuss the two other categories of solutions (see Fig. 8.4)
mentioned in our discussion of the Thomas—Fermi equation (8.66). Returning to
(8.69)—(8.70) we remark that solutions x(x) which vanish at a finite value v = x,
(that is, which belong to the second category) are such that N # Z, and hence cor-
respond to ions of radius r, = bx,. Moreover, since the slope of y is negative at x,
(see Fig. 8.4) the equation (8.70) implies that these ions must be positive ions, such
that Z > N [7]. Setting z = Z — N, so that ze is the net charge of the ion, we note
from (8.70) that the quantity z/Z is readily obtained from the tangent to the curve
X atx = x,, as shown in Fig. 8.4. Since x(x;) =0, the electron density p(r) vanishes
atr=r,=bx,, as seen from (8.65). On the other hand, looking at (8.55), (8.56) and
(8.63), and remembering that ¢, > 0 for an ion. we see that the potential V(r)
remains finite at r = r,.

The solutions of the Thomas-Fermi equation belonging to the third category
(that is. those which have no zero and diverge for large x) are more difficult to
interpret. First of all, the electron density p(r) does not vanish in this case, and one
may consider that these solutions correspond to negative values of ¢,. As seen
from Fig. 8.4, such solutions lie above the ‘universal’ curve of the neutral atom.
Now the total charge inside a sphere of radius r = bx is just

Ze - 4n€j p(ryr>dr’ = Ze| y(x) - xy'(x)] (8.79)
(

)
Thus, at the point r, = hx,, where
X(x) = x ' (x) =0 (8.80)

the total charge inside the sphere r = r, vanishes, and we note that the tangent to
x(x) at x = x, passes through the origin (see Fig. 8.4). For x < x/, the curve y(x)
therefore corresponds to a neutral atom having a finite boundary at r = r,, where
the density p(r) does not vanish. This may be interpreted as a representation of a
neutral atom under pressure [8]. Further developments of the Thomas—Fermi
method can be found in the monograph of Englert (1988).

[7] Negative ions cannot be handled by the Thomas—Fermi theory.
[8] We are not considering ions under pressure, since in dealing with an ensemble of such ions, diffi-
culties due to the presence of the Coulomb forces between ions would arise.




