Physics 21 Problem Set 8

Harry Nelson

due Monday, Feb. 28 at 5pm

Course Announcements:

Reading for these Problems: RHK4 14-4 and 14-5, 15-1 through 15-6, KK 10.1. PSR Fellows, who are advanced Physics Majors, are available to help you in the PSR Wed. & Thurs. from 6-8pm, and Sunday in 1640 Broida, 6-8pm.

1. (RHK4 14.40) A cube of uniform density, mass m, and edge length a is balanced on a cylindrical surface of radius r as shown in Fig. 1. Show that the criterion for stable equilibrium of the cube, assuming that friction is sufficient to prevent slipping, is r > a/2. The key to this problem is considering whether the center of mass of the cube increases or decreases in elevation when the cube tilts and moves. A clever diagram gives the answer away, as well as understanding the meaning of the tilt angle θ being in radians.

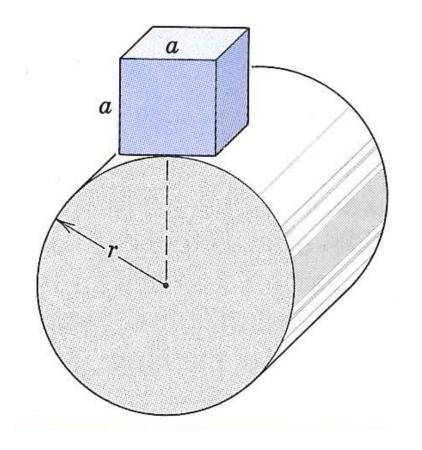


Figure 1: Problem 1.

2. (RHK4 14.46) A uniform bar of mass m = 4.7 kg and length L = 1.3 m is suspended at the ends by two vertical wires. Both wires are cylindrical, and one is steel with a diameter of $d_1 = 1.2$ mm, while the other is aluminum and has a diameter of $d_2 = 0.84$ mm. Before the bar was attached, the wires were of the same 1.7 m length. Find the angle θ between the bar and the horizontal; see Fig 2. You can assume that θ is so small that $\sin \theta = \theta$, as long as θ is in radians. Ignore the change in diameters of the wires; the bar and wires are in the same plane. A table of Young's moduli and other quantities is in Fig. 3.

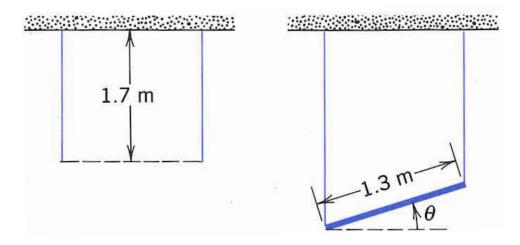


Figure 2: Problem 2.

0	F ENGINEER	ING INTEREST		
Material	Density (kg/m ³)	Young's Modulus (10º N/m²)	Ultimate Strength (10 ⁶ N/m ²)	Yield Strength (10 ⁶ N/m ²)
Steel ^a	7860	200	400	250
Aluminum	2710	70	110	95
Glass	2190	65	50^{b}	
Concrete ^c	2320	30	40^{b}	
Wood ^d	525	13	50^{b}	
Bone	1900	9^b	170^{b}	
Polystyrene	1050	3	48	
 ^a Structural steel (ASTM-A36). ^b In compression. 		^c High strength. ^d Douglas fir.		

 TABLE 1
 SOME ELASTIC PROPERTIES OF SELECTED MATERIALS OF ENGINEERING INTEREST

Figure 3: Problem 2.

3. (RHK4 15.8) A body oscillates with simple harmonic motion according to the equation:

 $x(t) = (6.12 \text{ m}) \cos[(8.38 \text{ rad/s})t + 1.92 \text{ rad}].$

Find, numerically,

(a) the displacement as a function of time, and at the specific time t = 1.90 s;

- (b) the velocity as a function of time, and at the specific time t = 1.90 s;
- (c) the acceleration as a function of time, and at the specific time t = 1.90 s;
- (d) the frequency (not circular frequency); and
- (e) the period of the motion.

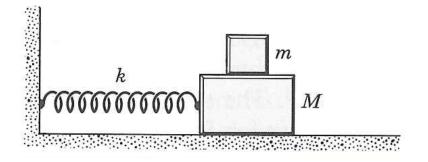


Figure 4: Problem 4.

- 4. (RHK4 15.14) Two blocks (m = 1.22 kg and M = 8.73 kg) and a spring (k = 344 N/m) are arranged on a horizontal, frictionless surface as shown in Fig. 4. The coefficient of static friction between the blocks is $\mu_s = 0.42$. Find the maximum possible amplitude of the simple harmonic motion if no slippage is to occur between the blocks.
- 5. (RHK4 15.30) A 5.13 kg object moves on a horizontal frictionless surface under the influence of spring with force constant k = 9.88 N/cm. The object is displaced from equilibrium x(0) = 53.5 cm and given an initial velocity of v(0) = 11.2 m/s gack toward the equilibrium position. Find
 - (a) the frequency of the motion,
 - (b) the initial potential energy U(0) of the system,
 - (c) the initial kinetic energy K(0) of the system,
 - (d) the amplitude of the motion, and
 - (e) make a plot of energy versus displacement from equilbrium, showing U(x), U(0), K(0), the total energy, and the turning points.
- 6. Make a table with 6 columns, where the first column is the angle θ in radians, and make the 12 entries in the first column $\theta = 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.75, 1, 1.1$ radians. Then make the second column $\sin \theta$, and evaluate it for 12 θ values given. Make the third column the percentage difference between θ and $\sin \theta$, that is, $100 \times (\theta \sin \theta) / \sin \theta$. The last three columns make $(1 \cos \theta), \theta^2/2$, and percentage difference between $\theta^2/2$ and $1 \cos \theta$. In the each case, at what given value of θ is the percentage difference closest to 10%?

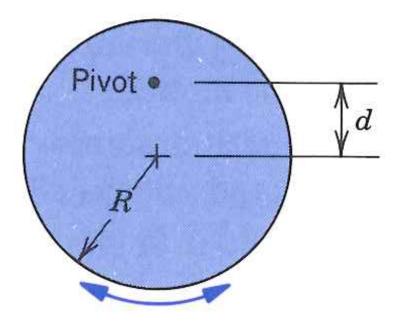


Figure 5: Problem 7.

- 7. (RHK4 15.45) A physical pendulum consists of a uniform solid disk of mass M = 563 g and a radius R = 14.4 cm supported in a vertical plane by a pivot located a distance d = 10.2 cm from the center of the disk, as shown in Fig. 5. The disk is displaced by a small angle and released. Find the period of the resulting simple harmonic motion.
- 8. (RHK4 15.49) A pendulum is formed by pivoting a long thin uniform rod of length L and mass m about a point on the rod which is a distance d above the center of the rod.
 - (a) Evaluate the small-amplitude period of this pendulum in terms of d, L, m, and g.
 - (b) Show that the period has a minimum value when $d = L/\sqrt{12} \approx 0.289L$.