Physics 21 Problem Set 10

Harry Nelson

due Tuesday, March 15 at 8am (at Final)

Course Announcements:

Reading for these Problems: KK Note 10.1 (pp. 433-437), KK sections 10.1-10.3, RHK4 15-8 and 15-9.

PSR Fellows, who are advanced Physics Majors, are available to help you in the PSR Wed. & Thurs. from 6-8pm, and Sunday in 1640 Broida, 6-8pm.

The Final is Tuesday, March 15 at 8:00am in 1640 Broida!

- 1. Let's analyze carefully the forced, damped oscillator we observed in class. The mass was m = 0.25 kg, and the period T = 1/2 s. It took 100 periods for the amplitude to decay to $e^{-\pi} = 0.043$ of its initial value.
 - (a) Compute ω_1 , numerically... since damping was present, you are calculating ω_1 , not ω_0 , from T. Refresh yourself on notation from KK if you must.
 - (b) Find Q, and then γ , assuming that $\omega_0 = \omega_1$.
 - (c) Actually, ω_0 is a little bigger than ω_1 . Physically, why is ω_0 bigger?
 - (d) Make the assumption that γ from the previous portion is sufficiently accurate, and use the expressions from KK to numerically compute ω_0 , and also compute the fractional change $\delta = (\omega_0 \omega_1)/\omega_1$. How does δ compare to 1/Q? You should find that one of them is very much smaller than the other, which justifies the approximation that $\omega_0 = \omega_1$ used above.
 - (e) Now assume there is a driving force $F_0 \cos \omega t$. Assume that $F_0 = 0.25$ N.
 - i. If the mass on the spring got pulled to a new static equilibrium by F_0 , how far would it be displaced from its previous equilibrium position, in millimeters?
 - ii. If the driving force is modulated at the (circular) frequency $\omega = \omega_0$, what is the amplitude of the driven oscillation in meters?
 - iii. Now consider the general response of the driven oscillator to F_0 modulated at the (circular) frequency ω . Drive the following expression for the displacement from equilibrium:

$$x(t) = \xi(\omega) \cos(\omega t - \phi(\omega)).$$

Here $\xi(\omega)$ and $\phi(\omega)$ are functions of ω that involve the parameters ω_0 and γ , which you need to do a little bit of complex-valued arithmetic to determine. Make very careful numerical plots of $\xi(\omega)$ and $\phi(\omega)$, for ω from 0 (static) to $10\omega_0$. Be really careful and do a great job when $\omega \approx \omega_0$!! You will need to use lots of closely spaced points there. You don't have to make many closely spaced points far from $\omega \approx \omega_0$. Graphically calculate the Full Width at Half Maximum. By the way, at least one great discovery (which eventually won a Nobel Prize) was missed because the experimenters didn't plot enough points near the resonance.