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Cross Product

I. Invariant Tensors

We defined a rotation as something that leaves the “length” v? = 2?21 v? invariant. An-
other way to say this is that a linear operator M is called a rotation matrix if it leaves the
symbol §;; invariant. What condition must such an M satisfy? Well, take J;; and perform

the operation M (one matrix for each index!):
8ij — MipM;ebpe = (MIMT);

If 0;; is to be invariant, then we want MIM” = I, or in other words MM” = I. That is, a
matrix M will leave d;; invariant if
MY =M1,

Matrices that satisfy this condition are called “orthogonal.”

Without motivation, let’s stare at another object, this time the completely antisymmet-
ric symbol €;55, which I remind you is defined as equalling +1 for cyclic permutations of
17k = 123, equalling —1 for cyclic permutations of ijk = 321, and equalling zero if any of the
two indices are equal. We thought of rotations as things that leave ¢;; invariant; what types
of operations will leave €, invariant?

Suppose the transformation M leaves €, invariant. In math, these words mean:
ijk — MigMjp Myc€ape = €ijik

Fun fact of life: e;46;5s = 3! (work it out numerically). So, take both sides of the above
equation and multiply by €;;, (summing over 1, j, k as usual) to get

5ijk5abcMiankac =3l

In other words, the transformation M will leave the symbol €;;; unchanged provided that M
satisfies

1
ﬁgijkgabcMiankac =1.

This strange looking requirement is typically repackaged using the language “determinant.”
For any matrix M, its determinant is defined as

1
det M = ggijkgabcMiankac .

If you have seen determinants before, you should check that this definition corresponds in
perhaps unfamiliar language to what you already know.



Terminology: From now on, we will reserve the word “rotation” for any opera-
tion M that leaves invariant both the identity tensor J,; and the antisymmetric
tensor ¢;jj.

We are including the ¢, invariance condition, or equivalently the condition det M = 1,
because rotations for which det M = —1 instead of +1 are rotations composed with reflec-
tions, and I don’t want to deal with reflections right now. In fancy talk, the set of matrices
M that satisfy MT = M~! and det M = 1 is called the group SO(3), where the S means
“special” (meaning det M = 1),” the O means “orthogonal” (meaning M7 = M '), and the
3 stands for the size of the matrix, namely 3-by-3.

FExample: Compute the determinant of the 2-by-2 matrix
M = <w 3““) .
y oz

1 1
det M = §5ij€abMianb = égij(MileZ — MigMjl)
1
= 5 [(M11M22 - M21M12) - (M12M21 - M22M11>]
= M1 Moy — Mo Mo = wz — xy

Answer:

I1. Cross Product

I had a purpose for all that annoying formalism, I promise. Here it is. Let {v;}?_, be
the components of a vector 7, and let {w;}?_; be components of a vector . Use the fancy
epsilon tensor you learned about to construct the new set of numbers ¢; = €;,v;w;. The
thing on the left has one free tensor index and thus the three numbers {c;}?_, are the com-
ponents of a vector.

The vector ¢ with components ¢; = ¢;;,v;w, is what is called “the cross prod-
uct” of the two vectors v and .

Example:

5 0
Let v, = 4], w; = | 2]. Compute ¢ x 0.
1 3

Solution:

[’17 X u7]1 = €1k = €123V2W3 + E132V3W9 = (+1)U2U)3 + (—1)1}311)2 =4x3—-1%x2=12-2=10
[U X W]y = 950w, = v3w; — w3 =1x0—5x3=15

[UX w]gzggjkvjwk:vlwg—vgwl =5Hx2—-4x0=10



Therefore
10

10
Once you get enough practice playing with that epsilon tensor, you’ll be able to compute
cross products in seconds.

What else can we do? Remember that ¢;;, is invariant under rotations. We started off
with using the invariant symbol d;; to define the “length” of a vector v* = d;;v;v;, or more
generally the scalar product between two vectors, -4 = d;;v,w; = viw; 4+ vows +v3ws, which
is also invariant under rotations. Take three vectors a, b and & Three vectors, eh? Well €,
has vector indices (that is, it transforms like the product of three vectors), and it is invariant
under rotations... so let’s follow our nose and write down

V= €¢jkaibjck .

What is that? Before spoiling it for you, notice that based on our definition of the cross
product we can repackage the above as

V=a (bxa).
That thing is the volume of the parallelepiped enclosed by the three vectors a, b and & Nice,
right?
III. Test your Understanding

1. Derive the seemingly mysterious identity
Vx (Vx@)=V(V-7) -V

for any vector v. (ﬁ =¢; 31 and V2=V - ﬁ, in case you haven’t seen those symbols.)

Hint: First prove to yourself that e;jx€ra = 0ia0jp — dipOja-

2. Look very carefully at what we've done in discussions 1 and 2 for any mention of the
fact that we are considering 3 dimensions. Sometimes it mattered, and sometimes it did
not. Where did it matter? For example, try to generalize the cross product to 4 dimensions.
What do you get?

3. Go through everything we did so far in 3 dimensions, except everywhere you see ¢;;
replace it with

-1 0

nj =10 1

0 0

_ o O

What changes? What doesn’t?



