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Cross Product

I. Invariant Tensors

We defined a rotation as something that leaves the “length” v2 ≡
∑3

i =1 v
2
i invariant. An-

other way to say this is that a linear operator M is called a rotation matrix if it leaves the
symbol δij invariant. What condition must such an M satisfy? Well, take δij and perform
the operation M (one matrix for each index!):

δij →MikMj`δk` = (MIMT )ij

If δij is to be invariant, then we want MIMT = I, or in other words MMT = I. That is, a
matrix M will leave δij invariant if

MT = M−1 .

Matrices that satisfy this condition are called “orthogonal.”

Without motivation, let’s stare at another object, this time the completely antisymmet-
ric symbol εijk, which I remind you is defined as equalling +1 for cyclic permutations of
ijk = 123, equalling −1 for cyclic permutations of ijk = 321, and equalling zero if any of the
two indices are equal. We thought of rotations as things that leave δij invariant; what types
of operations will leave εijk invariant?

Suppose the transformation M leaves εijk invariant. In math, these words mean:

εijk →MiaMjbMkcεabc = εijk

Fun fact of life: εijkεijk = 3! (work it out numerically). So, take both sides of the above
equation and multiply by εijk (summing over i, j, k as usual) to get

εijkεabcMiaMjbMkc = 3!

In other words, the transformation M will leave the symbol εijk unchanged provided that M
satisfies

1

3!
εijkεabcMiaMjbMkc = 1 .

This strange looking requirement is typically repackaged using the language “determinant.”
For any matrix M , its determinant is defined as

detM ≡ 1

3!
εijkεabcMiaMjbMkc .

If you have seen determinants before, you should check that this definition corresponds in
perhaps unfamiliar language to what you already know.
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Terminology: From now on, we will reserve the word “rotation” for any opera-
tion M that leaves invariant both the identity tensor δij and the antisymmetric
tensor εijk.

We are including the εijk invariance condition, or equivalently the condition detM = 1,
because rotations for which detM = −1 instead of +1 are rotations composed with reflec-
tions, and I don’t want to deal with reflections right now. In fancy talk, the set of matrices
M that satisfy MT = M−1 and detM = 1 is called the group SO(3), where the S means
“special” (meaning detM = 1),” the O means “orthogonal” (meaning MT = M−1), and the
3 stands for the size of the matrix, namely 3-by-3.

Example: Compute the determinant of the 2-by-2 matrix

M =

(
w x
y z

)
.

Answer:

detM =
1

2
εijεabMiaMjb =

1

2
εij(Mi1Mj2 −Mi2Mj1)

=
1

2
[(M11M22 −M21M12)− (M12M21 −M22M11)]

= M11M22 −M12M21 = wz − xy
II. Cross Product

I had a purpose for all that annoying formalism, I promise. Here it is. Let {vi}3i =1 be
the components of a vector ~v, and let {wi}3i =1 be components of a vector ~w. Use the fancy
epsilon tensor you learned about to construct the new set of numbers ci ≡ εijkvjwk. The
thing on the left has one free tensor index and thus the three numbers {ci}3i =1 are the com-
ponents of a vector.

The vector ~c with components ci = εijkvjwk is what is called “the cross prod-
uct” of the two vectors ~v and ~w.

Example:

Let vi =

5
4
1

 , wi =

0
2
3

. Compute ~v × ~w.

Solution:

[~v × ~w]1 = ε1jk = ε123v2w3 + ε132v3w2 = (+1)v2w3 + (−1)v3w2 = 4× 3− 1× 2 = 12− 2 = 10

[~v × ~w]2 = ε2jkvjwk = v3w1 − v1w3 = 1× 0− 5× 3 = 15

[~v × ~w]3 = ε3jkvjwk = v1w2 − v2w1 = 5× 2− 4× 0 = 10
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Therefore

(~v × ~w)i =

 10
−15
10

 .

Once you get enough practice playing with that epsilon tensor, you’ll be able to compute
cross products in seconds.

What else can we do? Remember that εijk is invariant under rotations. We started off
with using the invariant symbol δij to define the “length” of a vector v2 ≡ δijvivj, or more
generally the scalar product between two vectors, ~v · ~w ≡ δijviwj = v1w1 +v2w2 +v3w3, which

is also invariant under rotations. Take three vectors ~a,~b and ~c. Three vectors, eh? Well εijk

has vector indices (that is, it transforms like the product of three vectors), and it is invariant
under rotations... so let’s follow our nose and write down

V ≡ εijkaibjck .

What is that? Before spoiling it for you, notice that based on our definition of the cross
product we can repackage the above as

V = ~a · (~b× ~c ) .

That thing is the volume of the parallelepiped enclosed by the three vectors ~a,~b and ~c. Nice,
right?

III. Test your Understanding

1. Derive the seemingly mysterious identity

~∇× (~∇× ~v ) = ~∇(~∇ · ~v )−∇2~v

for any vector ~v. (~∇ ≡ êi
∂

∂xi
and ∇2 ≡ ~∇ · ~∇, in case you haven’t seen those symbols.)

Hint: First prove to yourself that εijkεkab = δiaδjb − δibδja.

2. Look very carefully at what we’ve done in discussions 1 and 2 for any mention of the
fact that we are considering 3 dimensions. Sometimes it mattered, and sometimes it did
not. Where did it matter? For example, try to generalize the cross product to 4 dimensions.
What do you get?

3. Go through everything we did so far in 3 dimensions, except everywhere you see δij
replace it with

ηij ≡

−1 0 0
0 1 0
0 0 1

 .

What changes? What doesn’t?
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