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which would have resulted in unequal numbers of !+ and !− in the early universe [50].
This leptogenesis could have been followed by nonperturbative SM processes that would
have converted the lepton asymmetry, in part, into the observed baryon asymmetry [51].

While the connection between the CP violation that would have led to leptogenesis,
and that which we hope to observe in neutrino oscillation, is model-dependent, it is
not likely that we have either of these without the other [52], because in the see-saw
picture, these two CP violations both arise from the same matrix of coupling constants.
This makes the search for CP violation in neutrino oscillation very interesting indeed.
Depending on the rough size of θ13, this CP violation may be observable with a very
intense conventional neutrino beam, or may require a “neutrino factory,” whose neutrinos
come from the decay of stored muons or radioactive nuclei. The detailed study of CP
violation may require a neutrino factory in any case.

With a conventional beam, one would seek CP violation, and try to determine whether
the mass spectrum is normal or inverted, by studying the oscillations νµ → νe and
νµ → νe. The appearance probability for νe in a beam that is initially νµ can be written
for sin2 2θ13 < 0.2 [53]

P (νµ → νe) ∼= sin2 2θ13 T1 − α sin 2θ13 T2 + α sin 2θ13 T3 + α2T4 . (13.39)

Here, α ≡ ∆m2
21/∆m2

31 is the small (∼ 1/30) ratio between the solar and atmospheric
squared-mass splittings, and

T1 = sin2 θ23
sin2[(1 − x)∆]

(1 − x)2
, (13.40)

T2 = sin δ sin 2θ12 sin 2θ23 sin ∆
sin(x∆)

x

sin[(1 − x)∆]
(1 − x)

, (13.41)

T3 = cos δ sin 2θ12 sin 2θ23 cos ∆
sin(x∆)

x

sin[(1 − x)∆]
(1 − x)

, (13.42)

and

T4 = cos2 θ23 sin2 2θ12
sin2(x∆)

x2 . (13.43)

In these expressions, ∆ ≡ ∆m2
31L/4E is the kinematical phase of the oscillation. The

quantity x ≡ 2
√

2GF NeE/∆m2
31, with GF the Fermi coupling constant and Ne the

electron number density, is a measure of the importance of the matter effect resulting
from coherent forward-scattering of electron neutrinos from ambient electrons as the
neutrinos travel through the earth from the source to the detector [cf. Sec. I]. In
the appearance probability P(νµ → νe), the T1 term represents the oscillation due
to the atmospheric-mass-splitting scale, the T4 term represents the oscillation due
to the solar-mass-splitting scale, and the T2 and T3 terms are the CP -violating and
CP -conserving interference terms, respectively.

The probability for the corresponding antineutrino oscillation, P(νµ → νe), is the same
as the probability P(νµ → νe) given by Eqs. (13.39)–(13.43), but with the signs in front
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of both x and sin δ reversed: both the matter effect and CP violation lead to a difference
between the νµ → νe and νµ → νe oscillation probabilities. In view of the dependence of
x on ∆m2

31, and in particular on the sign of ∆m2
31, the matter effect can reveal whether

the neutrino mass spectrum is normal or inverted. However, to determine the nature
of the spectrum, and to establish the presence of CP violation, it obviously will be
necessary to disentangle the matter effect from CP violation in the neutrino-antineutrino
oscillation probability difference that is actually observed. To this end, complementary
measurements will be extremely important. These can take advantage of the differing
dependences on the matter effect and on CP violation in P(νµ → νe).
vi) Will we encounter the completely unexpected?

The study of neutrinos has been characterized by surprises. It would be surprising if
further surprises were not in store. The possibilities include new, non-Standard-Model
interactions, unexpectedly large magnetic and electric dipole moments [54], unexpectedly
short lifetimes, and violations of CPT invariance, Lorentz invariance, or the equivalence
principle.

The questions we have discussed, and other questions about the world of neutrinos,
will be the focus of a major experimental program in the years to come.
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• T2K (approved in 2003)

– Construction:2004~2008

– Experiment: 20092009 ~

J-PARC@Tokai

Super-K

50kton

Phase II ! 4MW, Mton, CPV

T2K-I (0.75MW + SK)

! "µ! "e  appearance

– Aim to discover ##1313

! "µ! "x disappearance

– Precise $$mm2323
22, sinsin2222##2323

Off-axis beam: Narrow & Intense

OA2.5º:

1600"µCC/yr

"e~0.4% (peak)

T2K: TTokai-to(2)to(2)-KKamioka (~100%K2K)

P("µ&"e)

E"(GeV)

Super-K

New electronics installed last summer
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Long base-line ! oscillation experiment in Japan

T2K Experiment

T2K first beam commissioning 

in Apr-May ’09

Supre-K

ready for T2K
New accelerator(~MW),

! beam-line & detector

" Super-K(SK) as main neutrino detector : 
       22.5kton(fiducial) water cherenkov detector & good PID (e/#) performance

" Off-axis beam (intense & narrow-band low energy neutrino beam)

" Neutrino energy reconstruction :  
      CCQE interactions dominate at T2K beam energy

T2K features to enhance the sensitivity

next slide
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• discover a finite "13

• determine |Ue3| 
 ! important role for future neutrino experiments

• CPV in lepton sector

• mass hierarchy

• precise measurement

• Is "23 maximal ?

• Dirac or Majorana

• absolute mass scale
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normal inverted
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Current StatusCurrent Status
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depending on the validity of 
the LSND result 
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Next step of # oscillation experiment
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Angra	  

Double	  Chooz	  

Daya	  bay	  

1st	  generaPon:	  sin2(2θ13)~0.02-‐0.03	  

2nd	  generaPon:	  sin2(2θ13)	  	  0.01	  	  
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Site	  in	  French	  Ardennes	  
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Far	  

Near	  

Iso	  -‐	  Near/Far	  flux	  
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PerpecPves	  @	  Reactors	  
Giant	  detectors?	  
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