Physics 125

5/10/2010

Davis Tank – Near Deadwood

Davis Experiment

Solar Neutrino Flux

The Search Plot

Figure 13.4: The regions of squared-mass splitting and mixing angle favored or excluded by various experiments. This figure was contributed by H. Murayama (University of California, Berkeley). References to the data used in the figure can be found at http://hitoshi.berkeley.edu/neutrino/.

Earth-based reactor experiment

Figure 13.2: Ratio of the background- and geo-neutrino subtracted $\overline{\nu_e}$ spectrum to the no-oscillation expectation as a function of L_0/E [28]. See text for explanation.

Solar/KAMLAND

Atmospheric...

Figure 13.1: The region of the atmospheric oscillation parameters $\Delta m_{\rm atm}^2$ and $\sin^2 2\theta_{\rm atm}$ allowed by the SK, K2K, and MINOS data. The results of two different analyses of the SK ("Super K") data are shown [21].

Electron Neutrino Appearance (RPP)

With a conventional beam, one would seek CP violation, and try to determine whether the mass spectrum is normal or inverted, by studying the oscillations $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$. The appearance probability for ν_{e} in a beam that is initially ν_{μ} can be written for $\sin^{2} 2\theta_{13} < 0.2$ [53]

$$P(\nu_{\mu} \to \nu_{e}) \cong \sin^{2} 2\theta_{13} T_{1} - \alpha \sin 2\theta_{13} T_{2} + \alpha \sin 2\theta_{13} T_{3} + \alpha^{2} T_{4} \quad . \tag{13.39}$$

Here, $\alpha \equiv \Delta m_{21}^2 / \Delta m_{31}^2$ is the small (~1/30) ratio between the solar and atmospheric squared-mass splittings, and

$$T_1 = \sin^2 \theta_{23} \frac{\sin^2[(1-x)\Delta]}{(1-x)^2} \quad , \tag{13.40}$$

$$T_{2} = \sin \delta \sin 2\theta_{12} \sin 2\theta_{23} \sin \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} , \qquad (13.41)$$

$$T_3 = \cos \delta \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} , \qquad (13.42)$$

and

$$T_4 = \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(x\Delta)}{x^2} \quad . \tag{13.43}$$

In these expressions, $\Delta \equiv \Delta m_{31}^2 L/4E$ is the kinematical phase of the oscillation. The quantity $x \equiv 2\sqrt{2}G_F N_e E/\Delta m_{31}^2$, with G_F the Fermi coupling constant and N_e the electron number density, is a measure of the importance of the matter effect resulting from coherent forward-scattering of electron neutrinos from ambient electrons as the neutrinos travel through the earth from the source to the detector [cf. Sec. I]. In the appearance probability $P(\nu_{\mu} \rightarrow \nu_{e})$, the T_1 term represents the oscillation due to the atmospheric-mass-splitting scale, the T_4 term represents the oscillation due to the solar-mass-splitting scale, and the T_2 and T_3 terms are the CP-violating and CP-conserving interference terms, respectively.

The probability for the corresponding antineutrino oscillation, $P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})$, is the same as the probability $P(\nu_{\mu} \rightarrow \nu_{e})$ given by Eqs. (13.39)–(13.43), but with the signs in front

Electron Neutrino Appearance (2) (RPP)

of both x and sin δ reversed: both the matter effect and CP violation lead to a difference between the $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ oscillation probabilities. In view of the dependence of x on Δm_{31}^2 , and in particular on the sign of Δm_{31}^2 , the matter effect can reveal whether the neutrino mass spectrum is normal or inverted. However, to determine the nature of the spectrum, and to establish the presence of CP violation, it obviously will be necessary to disentangle the matter effect from CP violation in the neutrino-antineutrino oscillation probability difference that is actually observed. To this end, complementary measurements will be extremely important. These can take advantage of the differing dependences on the matter effect and on CP violation in $P(\nu_{\mu} \rightarrow \nu_{e})$.

Tokai to Kamiokande - Sakashita

Tokai to Kamiokande - Sakashita

Nova – starts about 2013

The 'Money Plots'

T2K

> x10 improvement from CHOOZ limit

Nova

Electron antineutrino disapperance

Looking for Sites

Site in French Ardennes

Daya Bay...

Perpectives @ Reactors

P.Huber, M.Lindner, T.Schwetz and W.Winter

Giant detectors?

Nucl.Phys.B665:487-519,2003

Nufact08