Physics 115C Midterm

Harry Nelson Lawrence Lin

Tuesday, October 29, 2002

Open book: you can use the textbook during the test. You can also use a calculator. Generally, express answers in symbolic form. Give numerical form when specified.

Dimensionless radial Schrödinger equation:

$$\left\{ -\frac{d^2}{d\rho^2} + \frac{\ell(\ell+1)}{\rho^2} + \operatorname{sgn}[V_0]\rho^s \right\} U_{\epsilon\ell}(\rho) = \epsilon U_{\epsilon\ell}(\rho)$$

where the potential $V(r) = V_0 r^s$, the dimensionless radius ρ is related to the radius r by $r = a\rho$ with $a = (\hbar^2/2\mu|V_0|)^{1/(s+2)}$ and the dimensionless energy $\epsilon = E/E_0$ with $E_0 = |V_0|(\hbar^2/2\mu|V_0|)^{s/(s+2)}$. The full wave-function is $\psi_{\epsilon\ell m} = R_{\epsilon\ell}(\rho)Y_\ell^m(\theta,\phi)$, and $U_{\epsilon\ell}(\rho) = \rho R_{\epsilon\ell}(\rho)$. The sgn function gives: $\operatorname{sgn} V_0 = +1$ when $V_0 > 0$, -1 when $V_0 < 0$.

To invert a 2 by 2 matrix:

$$\left(\begin{array}{cc} a & b \\ c & d \end{array} \right)^{-1} = \frac{1}{ad - bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right)$$

1. (30 pts) A particle is described by the wave function

$$\psi_E(r,\theta,\phi) = Ae^{-\gamma r^n} \ (A,\gamma = \text{real constants}, n = \text{non-zero integer})$$

- (a) (10 pts) What is the angular momentum content of the state?
- (b) (20 pts) This form of wave function can solve Schrödinger's equation for all r for certain power law potentials with form $V(r) \propto r^s$. Find all the values of s for which ψ_E is a solution to Schrödinger's equation. Make a brief table showing those values of s and the corresponding values of s.
- 2. (15 pts) Find the ratio of the energy of the ground state for the potential $V(r) = \gamma r$, E_1 , to the energy of the ground state for the potential $\overline{V}(r) = 2\gamma r$, \overline{E}_1 . That is, find E_1/\overline{E}_1 . The constant γ is a positive real number, and assume that the (reduced) mass of the bound particle (system) is the same for both potentials.
- 3. (30 pts) In this problem, obtain numerical answers, in terms of rational numbers and square roots like $\sqrt{2}$ and $\sqrt{3}$. An electron at rest is described by the spinor:

$$\begin{pmatrix} -\frac{1}{2}e^{-i\pi/8} \\ \frac{\sqrt{3}}{2}e^{i\pi/8} \end{pmatrix}$$

- (a) (15 pts) What are the expectation values of the operators s_x , s_y , and s_z ?
- (b) (15 pts) The spinor is an eigenstate, with eigenvalue $+\hbar/2$, of a particular matrix. Find that matrix.
- 4. (25 pts) Let \vec{A} be a real 3-vector, and A_0 be a simple real number. Find the four coefficients m_{β} in the relationship

$$\frac{1}{A_0 \mathbf{1} + \vec{A} \cdot \vec{\sigma}} = \sum_{\beta=0}^{3} m_{\beta} \sigma_{\beta}$$

where the 4 σ_{β} are the 2 by 2 identity matrix **1** (for $\beta = 0$) and the three Pauli matrices σ_{β} (for $\beta = 1, 2, 3$). Feel free to start out by explicitly writing out the 2 by 2 matrix image for the denominator of the left hand side.