Physics 115B Third Problem Set

Harry Nelson

Office Hours Wed 9:30am-11:30am in 5103 Broida

TA: Antonio Boveia

Office Hours Tu 10:30am-12:30pm, Wed noon-12:30pm, Thu noon-12:30pm in PLC

Grader: Victor Soto

Office Hours Tu 9:00-10:30am in PLC

due Thursday, April 24, 2003

1. In this problem, work through the uncertainty principle for the operators for the 3 components of spin-1/2:

$$\mathbf{s}_x \doteq \frac{\hbar}{2} \left[egin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array}
ight] \quad , \quad \mathbf{s}_y \doteq \frac{\hbar}{2} \left[egin{array}{ccc} 0 & -i \\ i & 0 \end{array}
ight] \quad , \quad \mathbf{s}_z \doteq \frac{\hbar}{2} \left[egin{array}{ccc} 1 & 0 \\ 0 & -1 \end{array}
ight]$$

- (a) Use the matrices to evaluate the commutator and anticommutator of \mathbf{s}_x and \mathbf{s}_y , and use (9.2.12) on page 239 of your text to develop an inequality for $(\Delta s_x)^2 (\Delta s_y)^2$.
- (b) Find the column vector representation of the general state $|\psi\rangle$ for which the right hand side of the inequality from part (a) is 0.
- (c) Find the matrices that represent the operators $\hat{\mathbf{s}}_x$ and $\hat{\mathbf{s}}_y$, defined in analogy with (9.2.3) on page 238 of your text; use the state $|\psi\rangle$ from part (b) to evaluate $\langle \mathbf{s}_x \rangle$ and $\langle \mathbf{s}_y \rangle$.
- (d) Find the column vectors that represent $|\hat{\mathbf{s}}_x\psi\rangle$ and $|\hat{\mathbf{s}}_y\psi\rangle$, where $|\psi\rangle$ is the state you found in part (b).
- (e) Use the norms of the states found in part (d) to evaluate the left hand side of the inequality from part (a).
- (f) When the inequality is an equality, do you get the relationship between the states found in part (d) that you expect from the Schwartz (in)equality?
- 2. Exercise 9.4.1 on page 244 of your text.
- 3. Exercise 9.4.3 on page 244 of your text.
- 4. Exercise 9.4.4 on page 244 of your text.