Physics 115A Third Problem Set

Harry Nelson Office Hours (This Week) Th 1:30-3:00pm TA: Antonio Boveia Office Hours M 9-10am, Fr 1-3pm PLC Grader: Victor Soto Office Hours Th 11:00-12:30pm PLC

due Monday, January 27, 2003

1. The three kets $|1\rangle$, $|2\rangle$, and $|3\rangle$ are represented, in a particular basis as:

$$|1\rangle \doteq \begin{bmatrix} 1/2\\\sqrt{3}/2\sqrt{2}\\\sqrt{3}/2\sqrt{2} \end{bmatrix}, |2\rangle \doteq \begin{bmatrix} -\sqrt{3}/2\\1/2\sqrt{2}\\1/2\sqrt{2} \end{bmatrix}, |3\rangle \doteq \begin{bmatrix} 0\\1/\sqrt{2}\\-1/\sqrt{2} \end{bmatrix}.$$

- (a) Find the matrices that represent $|1\rangle\langle 1|, |2\rangle\langle 2|, |1\rangle\langle 1|+|2\rangle\langle 2|, \text{and } |1\rangle\langle 1|+|2\rangle\langle 2|+|3\rangle\langle 3|.$
- (b) Use the matrix representation to evaluate the action of $|1\rangle\langle 1| + |2\rangle\langle 2|$ on $|3\rangle$, and interpret the result.
- (c) Evaluate and interpret the trace of $|1\rangle\langle 1| + |2\rangle\langle 2|$.
- 2. Use an insertion of the 'decomposition of unity,' which is the relationship $\sum_{k=1}^{n} |k\rangle \langle k| = \mathbf{I}$, to derive the 'matrix multiplication' relationship between the matrix elements of a sequence of two linear operators, $\mathbf{\Lambda}\mathbf{\Omega}$, with matrix elements in the basis of $\langle i|\mathbf{\Lambda}\mathbf{\Omega}|j\rangle$, and the matrix elements of the individual operators $\langle i|\mathbf{\Lambda}|k\rangle$ and $\langle k|\mathbf{\Omega}|j\rangle$.
- 3. In class, and on page 22 of your text, the representation of the rotation operator $R(\frac{1}{2}\pi \mathbf{i})$ in the 'standard' basis was derived. Now, for a challenge, represent $R(\frac{1}{2}\pi \mathbf{i})$ in the basis described by the three kets given in problem 1 (relabel those as $|1'\rangle$, $|2'\rangle$, and $|3'\rangle$). Assume that the three components of each ket in problem 1 are, respectively, the x, y, and z components of the new basis kets. Make a drawing showing what those kets in problem 1 look like in the xyz coordinate system. You don't need to use the drawing to obtain the new representation of $R(\frac{1}{2}\pi \mathbf{i})$, however; it is sufficient to put together the unitary transformation needed, as described in class, and to apply them.
- 4. Exercise 1.6.3 on page 28 of your text.
- 5. Exercise 1.6.6 on page 29 of your text.